MRC Laboratory of MolecularBiology, Hills Road,Cambridge CB2 0QH, UK.
J Mol Biol. 2010 Sep 10;402(1):154-64. doi: 10.1016/j.jmb.2010.07.017. Epub 2010 Jul 17.
RNA is known to perform diverse roles in the cell, often as ribonucleoprotein (RNP) particles. While the crystal structure of these RNP particles could provide crucial insights into their functions, crystallographic work on RNP complexes is often hampered by difficulties in obtaining well-diffracting crystals. The small nuclear ribonucleoprotein (snRNP) core domain, acting as an assembly nucleus for the maturation of snRNPs, plays a crucial role in the biogenesis of four of the spliceosomal snRNPs. We have succeeded in crystallising the human U4 snRNP core domain containing seven Sm proteins and a truncated U4 snRNA variant. The most critical factor in our success in the crystallisation was the introduction of various tertiary interaction modules into the RNA that could promote crystal packing without altering the core structure. Here, we describe various strategies employed in our crystallisation effort that could be applied to crystallisation of other RNP particles.
RNA 在细胞中发挥着多种作用,通常作为核糖核蛋白 (RNP) 颗粒。虽然这些 RNP 颗粒的晶体结构可以为其功能提供关键的见解,但 RNP 复合物的晶体学工作常常受到获得良好衍射晶体的困难的阻碍。作为 snRNPs 成熟的组装核心,小分子核核糖核蛋白 (snRNP) 核心域在剪接体 snRNPs 的生物发生中起着至关重要的作用。我们已经成功地结晶了包含七个 Sm 蛋白和一个截短的 U4 snRNA 变体的人 U4 snRNP 核心域。我们在结晶中取得成功的最关键因素是引入了各种三级相互作用模块到 RNA 中,这些模块可以促进晶体堆积而不改变核心结构。在这里,我们描述了我们在结晶工作中采用的各种策略,这些策略可以应用于其他 RNP 颗粒的结晶。