GE Healthcare Technologies, Waukesha, WI 53188, USA.
IEEE Trans Image Process. 2011 Jan;20(1):161-75. doi: 10.1109/TIP.2010.2058811. Epub 2010 Jul 19.
Recent applications of model-based iterative reconstruction (MBIR) algorithms to multislice helical CT reconstructions have shown that MBIR can greatly improve image quality by increasing resolution as well as reducing noise and some artifacts. However, high computational cost and long reconstruction times remain as a barrier to the use of MBIR in practical applications. Among the various iterative methods that have been studied for MBIR, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a fast model-based iterative reconstruction algorithm using spatially nonhomogeneous ICD (NH-ICD) optimization. The NH-ICD algorithm speeds up convergence by focusing computation where it is most needed. The NH-ICD algorithm has a mechanism that adaptively selects voxels for update. First, a voxel selection criterion VSC determines the voxels in greatest need of update. Then a voxel selection algorithm VSA selects the order of successive voxel updates based upon the need for repeated updates of some locations, while retaining characteristics for global convergence. In order to speed up each voxel update, we also propose a fast 1-D optimization algorithm that uses a quadratic substitute function to upper bound the local 1-D objective function, so that a closed form solution can be obtained rather than using a computationally expensive line search algorithm. We examine the performance of the proposed algorithm using several clinical data sets of various anatomy. The experimental results show that the proposed method accelerates the reconstructions by roughly a factor of three on average for typical 3-D multislice geometries.
最近,基于模型的迭代重建(MBIR)算法在多层螺旋 CT 重建中的应用表明,MBIR 可以通过提高分辨率、降低噪声和一些伪影来极大地提高图像质量。然而,高计算成本和长重建时间仍然是 MBIR 在实际应用中的障碍。在研究的各种用于 MBIR 的迭代方法中,由于其快速收敛,迭代坐标下降(ICD)被发现具有相对较低的总体计算要求。本文提出了一种使用空间非均匀 ICD(NH-ICD)优化的快速基于模型的迭代重建算法。NH-ICD 算法通过在最需要的地方集中计算来加速收敛。NH-ICD 算法具有一种自适应选择要更新的体素的机制。首先,体素选择准则 VSC 确定最需要更新的体素。然后,体素选择算法 VSA 根据某些位置需要重复更新的情况选择连续体素更新的顺序,同时保留全局收敛的特性。为了加快每个体素的更新速度,我们还提出了一种快速的 1-D 优化算法,该算法使用二次替代函数来上限局部 1-D 目标函数,以便获得封闭形式的解,而不是使用计算成本高昂的线搜索算法。我们使用各种解剖结构的几个临床数据集来检查所提出算法的性能。实验结果表明,对于典型的 3-D 多层几何结构,该方法平均可以将重建速度提高约三倍。