Suppr超能文献

十年的洋葱伯克霍尔德氏菌毒力决定因子研究。

A decade of Burkholderia cenocepacia virulence determinant research.

机构信息

Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.

出版信息

Infect Immun. 2010 Oct;78(10):4088-100. doi: 10.1128/IAI.00212-10. Epub 2010 Jul 19.

Abstract

The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immunocompromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.

摘要

洋葱伯克霍尔德菌复合体(Bcc)是一组具有遗传相关性的环境细菌,可导致囊性纤维化(CF)和其他潜在疾病患者发生慢性机会性感染。由于细菌对抗生素具有固有耐药性,这些感染很难治疗。细菌可以通过社交接触在 CF 患者之间传播,有时还会导致洋葱伯克霍尔德菌综合征,即一种伴有败血症的致命性肺炎。洋葱伯克霍尔德菌一直是关注的焦点,因为最初它是北美和欧洲 CF 患者分离出的最常见的 Bcc 物种。如今,洋葱伯克霍尔德菌与伯克霍尔德菌多源亚种一起,是 CF 患者中最常见的 Bcc 物种。鉴于过去十年中我们对 B. cenocepacia 的了解取得了进展,我们认为现在是回顾其发病机制的知识的合适时机,特别关注毒力决定因素的特征以及为研究这些因素而开发的新工具。这些研究中出现的一个共同主题是,洋葱伯克霍尔德菌在免疫功能低下的患者中建立慢性感染,这些感染更多地依赖于介导宿主小生境适应的决定因素,而不是直接参与宿主细胞和组织损伤的决定因素。

相似文献

1
A decade of Burkholderia cenocepacia virulence determinant research.
Infect Immun. 2010 Oct;78(10):4088-100. doi: 10.1128/IAI.00212-10. Epub 2010 Jul 19.
2
Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence.
Clin Microbiol Infect. 2010 Jul;16(7):821-30. doi: 10.1111/j.1469-0691.2010.03237.x.
4
Burkholderia multivorans survival and trafficking within macrophages.
J Med Microbiol. 2013 Feb;62(Pt 2):173-184. doi: 10.1099/jmm.0.051243-0. Epub 2012 Oct 25.
6
The multifarious, multireplicon Burkholderia cepacia complex.
Nat Rev Microbiol. 2005 Feb;3(2):144-56. doi: 10.1038/nrmicro1085.
7
Virulence of Burkholderia cepacia complex strains in gp91phox-/- mice.
Cell Microbiol. 2007 Dec;9(12):2817-25. doi: 10.1111/j.1462-5822.2007.00998.x. Epub 2007 Jul 11.
8
Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells.
Microbiology (Reading). 2009 Sep;155(Pt 9):2809-2817. doi: 10.1099/mic.0.031344-0. Epub 2009 Jun 18.
9
Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing.
Future Microbiol. 2010 Jul;5(7):1087-99. doi: 10.2217/fmb.10.68.

引用本文的文献

1
Unraveling H111 fitness determinants using two animal models.
mSystems. 2025 Apr 22;10(4):e0135424. doi: 10.1128/msystems.01354-24. Epub 2025 Mar 19.
2
Deferiprone inhibits virulence and biofilm formation in Burkholderia cenocepacia.
Med Microbiol Immunol. 2025 Mar 8;214(1):15. doi: 10.1007/s00430-025-00824-4.
3
A type VI secretion system in species and triggers distinct macrophage death pathways independent of the pyrin inflammasome.
Infect Immun. 2024 Dec 10;92(12):e0031624. doi: 10.1128/iai.00316-24. Epub 2024 Oct 31.
5
The mntH gene of Burkholderia cenocepacia influences motility and quorum sensing to control virulence.
Braz J Microbiol. 2024 Dec;55(4):3769-3780. doi: 10.1007/s42770-024-01506-8. Epub 2024 Sep 4.
6
Glycoproteomic and proteomic analysis of reveals glycosylation events within FliF and MotB are dispensable for motility.
Microbiol Spectr. 2024 Jun 4;12(6):e0034624. doi: 10.1128/spectrum.00346-24. Epub 2024 May 6.
7
epigenetic regulator M.BceJIV simultaneously engages two DNA recognition sequences for methylation.
bioRxiv. 2024 Jan 23:2024.01.20.576384. doi: 10.1101/2024.01.20.576384.
8
Bacteriophage steering of toward reduced virulence and increased antibiotic sensitivity.
J Bacteriol. 2023 Oct 26;205(10):e0019623. doi: 10.1128/jb.00196-23. Epub 2023 Oct 4.
9
Bacterial type VI secretion system (T6SS): an evolved molecular weapon with diverse functionality.
Biotechnol Lett. 2023 Mar;45(3):309-331. doi: 10.1007/s10529-023-03354-2. Epub 2023 Jan 23.
10
A machine learning model trained on a high-throughput antibacterial screen increases the hit rate of drug discovery.
PLoS Comput Biol. 2022 Oct 13;18(10):e1010613. doi: 10.1371/journal.pcbi.1010613. eCollection 2022 Oct.

本文引用的文献

3
The Burkholderia cenocepacia K56-2 pleiotropic regulator Pbr, is required for stress resistance and virulence.
Microb Pathog. 2010 May;48(5):168-77. doi: 10.1016/j.micpath.2010.02.006. Epub 2010 Mar 3.
5
Within-host evolution of Burkholderia pseudomallei in four cases of acute melioidosis.
PLoS Pathog. 2010 Jan 15;6(1):e1000725. doi: 10.1371/journal.ppat.1000725.
8
Regulation of phenylacetic acid degradation genes of Burkholderia cenocepacia K56-2.
BMC Microbiol. 2009 Oct 18;9:222. doi: 10.1186/1471-2180-9-222.
10
Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia.
BMC Genomics. 2009 Sep 17;10:441. doi: 10.1186/1471-2164-10-441.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验