Suppr超能文献

匈牙利温血马跳跃成绩的遗传参数的随机回归模型估计。

Random regression model estimation of genetic parameters for show-jumping results of Hungarian Sporthorses.

机构信息

Institute of Animal Science, University of Debrecen, Debrecen, Hungary.

出版信息

J Anim Breed Genet. 2010 Aug;127(4):280-8. doi: 10.1111/j.1439-0388.2009.00848.x.

Abstract

The aim of this study was to estimate the genetic parameters for show-jumping competition performance of Hungarian Sporthorses using a random regression model. There were 21,210 records from 739 horses collected in Hungary between 1996 and 2004. Performance was expressed as shifted Blom normalized ranks and as the difference between fence height and fault points. The random regression model (RRM) included fixed effects for sex, year, location, and obstacle height and random effects for animal, rider and permanent environment. Regressions for the random effects in the RRM were modelled with Legendre polynomials from first to fifth order of fit. The model focused on performance of horses from 4 to 11 years of age, with heterogeneous residual variances considered. The heritabilities were low to moderate for both variables. Genetic and phenotypic correlations between different ages decreased with increasing distance between the ages.

摘要

本研究旨在使用随机回归模型估计匈牙利运动马的跳跃比赛表现的遗传参数。1996 年至 2004 年间,在匈牙利收集了 739 匹马的 21210 条记录。表现用移位的 Blom 标准化等级和障碍物高度与失误分数之间的差值来表示。随机回归模型(RRM)包括性别、年份、地点和障碍物高度的固定效应,以及动物、骑手和永久环境的随机效应。RRM 中的随机效应回归模型采用了从第一到第五阶拟合的勒让德多项式。该模型专注于 4 至 11 岁马的表现,并考虑了异质残差方差。两个变量的遗传力均为低至中度。不同年龄之间的遗传和表型相关性随着年龄差距的增加而降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验