Suppr超能文献

CYP93G2 是一种黄烷酮 2-羟化酶,是水稻中 C-糖苷黄酮生物合成所必需的。

CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice.

机构信息

School of Biological Sciences, The University of Hong Kong, Hong Kong, China.

出版信息

Plant Physiol. 2010 Sep;154(1):324-33. doi: 10.1104/pp.110.161042. Epub 2010 Jul 20.

Abstract

C-Glycosylflavones are ubiquitous in the plant kingdom, and many of them have beneficial effects on human health. They are a special group of flavonoid glycosides in which the sugars are C-linked to the flavone skeleton. It has been long presumed that C-glycosylflavones have a different biosynthetic origin from O-glycosylflavonoids. In rice (Oryza sativa), a C-glucosyltransferase (OsCGT) that accepts 2-hydroxyflavanone substrates and a dehydratase activity that selectively converts C-glucosyl-2-hydroxyflavanones to 6C-glucosylflavones were recently described. In this study, we provide in vitro and in planta evidence that the rice P450 CYP93G2 protein encoded by Os06g01250 is a functional flavanone 2-hydroxylase. CYP93G2 is related to the CYP93B subfamily, which consists of dicot flavone synthase II enzymes. In the presence of NADPH, recombinant CYP93G2 converts naringenin and eriodictyol to the corresponding 2-hydroxyflavanones. In addition, CYP93G2 generates 2-hydroxyflavanones, which are modified by O-glycosylation in transgenic Arabidopsis (Arabidopsis thaliana). Coexpression of CYP93G2 and OsCGT in Arabidopsis resulted in the production of C-glucosyl-2-hydroxyflavanones in the dibenzoylmethane tautomeric form. The same structure was reported previously for the in vitro OsCGT reaction products. Thus, CYP93G2 generates 2-hydroxyflavanone substrates from flavanones for C-glucosylation by OsCGT in planta. Furthermore, knocking down Os06g01250 in rice (O. sativa subsp. japonica 'Zhonghua 11') preferentially depleted the accumulation of C-glycosylapigenin, C-glycosylluteolin, and C-glycosylchrysoeriol but did not affect the levels of tricin, which is frequently present as O-glycosides in cereals. Taken together, our work conclusively assigned CYP93G2 as the first enzyme that channels flavanones to C-glycosylflavone biosynthesis in rice.

摘要

C-糖基黄酮在植物界中普遍存在,其中许多对人类健康有益。它们是黄酮类糖苷的一个特殊群体,其中的糖通过 C 键连接到黄酮骨架上。长期以来,人们一直认为 C-糖基黄酮的生物合成起源与 O-糖基黄酮不同。在水稻(Oryza sativa)中,最近描述了一种接受 2-羟基黄烷酮底物的 C-葡萄糖基转移酶(OsCGT)和一种脱水酶活性,该活性选择性地将 C-葡萄糖基-2-羟基黄烷酮转化为 6C-葡萄糖基黄酮。在这项研究中,我们提供了体外和体内证据,证明由 Os06g01250 编码的水稻 P450 CYP93G2 蛋白是一种功能性的黄烷酮 2-羟化酶。CYP93G2 与 CYP93B 亚家族有关,该亚家族由双子叶黄酮合酶 II 酶组成。在 NADPH 的存在下,重组 CYP93G2 将柚皮素和圣草酚转化为相应的 2-羟基黄烷酮。此外,CYP93G2 产生 2-羟基黄烷酮,这些黄烷酮在转基因拟南芥(Arabidopsis thaliana)中被 O-糖基化修饰。CYP93G2 和 OsCGT 在拟南芥中的共表达导致二苯甲酰甲烷互变异构形式的 C-葡萄糖基-2-羟基黄烷酮的产生。以前曾报道过 OsCGT 体外反应产物的相同结构。因此,CYP93G2 在体内从黄烷酮生成 2-羟基黄烷酮底物,供 OsCGT 进行 C-糖基化。此外,在水稻(O. sativa subsp. japonica 'Zhonghua 11')中敲低 Os06g01250 优先耗尽 C-糖基芹菜素、C-糖基木犀草素和 C-糖基圣草酚的积累,但不影响经常以 O-糖苷形式存在于谷物中的麦角固醇的水平。总之,我们的工作明确将 CYP93G2 鉴定为第一个将黄烷酮定向到水稻 C-糖基黄酮生物合成的酶。

相似文献

1
CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice.
Plant Physiol. 2010 Sep;154(1):324-33. doi: 10.1104/pp.110.161042. Epub 2010 Jul 20.
2
Cytochrome P450 93G1 Is a Flavone Synthase II That Channels Flavanones to the Biosynthesis of Tricin O-Linked Conjugates in Rice.
Plant Physiol. 2014 Jul;165(3):1315-1327. doi: 10.1104/pp.114.239723. Epub 2014 May 19.
3
Completion of Tricin Biosynthesis Pathway in Rice: Cytochrome P450 75B4 Is a Unique Chrysoeriol 5'-Hydroxylase.
Plant Physiol. 2015 Aug;168(4):1527-36. doi: 10.1104/pp.15.00566. Epub 2015 Jun 16.
5
The C-glycosylation of flavonoids in cereals.
J Biol Chem. 2009 Jul 3;284(27):17926-34. doi: 10.1074/jbc.M109.009258. Epub 2009 May 1.
6
Flavonoids are indispensable for complete male fertility in rice.
J Exp Bot. 2020 Aug 6;71(16):4715-4728. doi: 10.1093/jxb/eraa204.
7
Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum.
J Exp Bot. 2010 Feb;61(4):983-94. doi: 10.1093/jxb/erp364. Epub 2009 Dec 10.
8
Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae.
Microb Cell Fact. 2018 Jul 9;17(1):107. doi: 10.1186/s12934-018-0952-5.
10
Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone.
Xenobiotica. 2019 Feb;49(2):131-142. doi: 10.1080/00498254.2018.1426133. Epub 2018 Jan 29.

引用本文的文献

2
Identification of Flavonoids Using UV-Vis and MS Spectra.
Methods Mol Biol. 2025;2895:111-135. doi: 10.1007/978-1-0716-4350-1_9.
6
Transcriptomic profiling reveals candidate allelopathic genes in rice responsible for interactions with barnyardgrass.
Front Plant Sci. 2023 Feb 17;14:1104951. doi: 10.3389/fpls.2023.1104951. eCollection 2023.

本文引用的文献

1
Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum.
J Exp Bot. 2010 Feb;61(4):983-94. doi: 10.1093/jxb/erp364. Epub 2009 Dec 10.
2
The C-glycosylation of flavonoids in cereals.
J Biol Chem. 2009 Jul 3;284(27):17926-34. doi: 10.1074/jbc.M109.009258. Epub 2009 May 1.
3
Functional characterization of key structural genes in rice flavonoid biosynthesis.
Planta. 2008 Nov;228(6):1043-54. doi: 10.1007/s00425-008-0806-1. Epub 2008 Aug 26.
5
Characterization of flavone synthase I from rice.
BMB Rep. 2008 Jan 31;41(1):68-71. doi: 10.5483/bmbrep.2008.41.1.068.
7
Activity and allelopathy of soil of flavone o-glycosides from rice.
J Agric Food Chem. 2007 Jul 25;55(15):6007-12. doi: 10.1021/jf0703912. Epub 2007 Jun 30.
8
Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis.
Plant Physiol. 2007 Jul;144(3):1442-54. doi: 10.1104/pp.107.098392. Epub 2007 May 25.
9
Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation.
Plant Physiol. 2007 Jun;144(2):741-51. doi: 10.1104/pp.106.095018. Epub 2007 Apr 13.
10
Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm.
Plant Biotechnol J. 2006 May;4(3):303-15. doi: 10.1111/j.1467-7652.2006.00182.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验