School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Plant Physiol. 2010 Sep;154(1):324-33. doi: 10.1104/pp.110.161042. Epub 2010 Jul 20.
C-Glycosylflavones are ubiquitous in the plant kingdom, and many of them have beneficial effects on human health. They are a special group of flavonoid glycosides in which the sugars are C-linked to the flavone skeleton. It has been long presumed that C-glycosylflavones have a different biosynthetic origin from O-glycosylflavonoids. In rice (Oryza sativa), a C-glucosyltransferase (OsCGT) that accepts 2-hydroxyflavanone substrates and a dehydratase activity that selectively converts C-glucosyl-2-hydroxyflavanones to 6C-glucosylflavones were recently described. In this study, we provide in vitro and in planta evidence that the rice P450 CYP93G2 protein encoded by Os06g01250 is a functional flavanone 2-hydroxylase. CYP93G2 is related to the CYP93B subfamily, which consists of dicot flavone synthase II enzymes. In the presence of NADPH, recombinant CYP93G2 converts naringenin and eriodictyol to the corresponding 2-hydroxyflavanones. In addition, CYP93G2 generates 2-hydroxyflavanones, which are modified by O-glycosylation in transgenic Arabidopsis (Arabidopsis thaliana). Coexpression of CYP93G2 and OsCGT in Arabidopsis resulted in the production of C-glucosyl-2-hydroxyflavanones in the dibenzoylmethane tautomeric form. The same structure was reported previously for the in vitro OsCGT reaction products. Thus, CYP93G2 generates 2-hydroxyflavanone substrates from flavanones for C-glucosylation by OsCGT in planta. Furthermore, knocking down Os06g01250 in rice (O. sativa subsp. japonica 'Zhonghua 11') preferentially depleted the accumulation of C-glycosylapigenin, C-glycosylluteolin, and C-glycosylchrysoeriol but did not affect the levels of tricin, which is frequently present as O-glycosides in cereals. Taken together, our work conclusively assigned CYP93G2 as the first enzyme that channels flavanones to C-glycosylflavone biosynthesis in rice.
C-糖基黄酮在植物界中普遍存在,其中许多对人类健康有益。它们是黄酮类糖苷的一个特殊群体,其中的糖通过 C 键连接到黄酮骨架上。长期以来,人们一直认为 C-糖基黄酮的生物合成起源与 O-糖基黄酮不同。在水稻(Oryza sativa)中,最近描述了一种接受 2-羟基黄烷酮底物的 C-葡萄糖基转移酶(OsCGT)和一种脱水酶活性,该活性选择性地将 C-葡萄糖基-2-羟基黄烷酮转化为 6C-葡萄糖基黄酮。在这项研究中,我们提供了体外和体内证据,证明由 Os06g01250 编码的水稻 P450 CYP93G2 蛋白是一种功能性的黄烷酮 2-羟化酶。CYP93G2 与 CYP93B 亚家族有关,该亚家族由双子叶黄酮合酶 II 酶组成。在 NADPH 的存在下,重组 CYP93G2 将柚皮素和圣草酚转化为相应的 2-羟基黄烷酮。此外,CYP93G2 产生 2-羟基黄烷酮,这些黄烷酮在转基因拟南芥(Arabidopsis thaliana)中被 O-糖基化修饰。CYP93G2 和 OsCGT 在拟南芥中的共表达导致二苯甲酰甲烷互变异构形式的 C-葡萄糖基-2-羟基黄烷酮的产生。以前曾报道过 OsCGT 体外反应产物的相同结构。因此,CYP93G2 在体内从黄烷酮生成 2-羟基黄烷酮底物,供 OsCGT 进行 C-糖基化。此外,在水稻(O. sativa subsp. japonica 'Zhonghua 11')中敲低 Os06g01250 优先耗尽 C-糖基芹菜素、C-糖基木犀草素和 C-糖基圣草酚的积累,但不影响经常以 O-糖苷形式存在于谷物中的麦角固醇的水平。总之,我们的工作明确将 CYP93G2 鉴定为第一个将黄烷酮定向到水稻 C-糖基黄酮生物合成的酶。