Suppr超能文献

细胞色素P450 93G1是一种黄酮合酶II,可将黄烷酮导向水稻中三甲氧苄嗪O-连接缀合物的生物合成。

Cytochrome P450 93G1 Is a Flavone Synthase II That Channels Flavanones to the Biosynthesis of Tricin O-Linked Conjugates in Rice.

作者信息

Lam Pui Ying, Zhu Fu-Yuan, Chan Wai Lung, Liu Hongjia, Lo Clive

机构信息

School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., F.-Y.Z., W.L.C., C.L.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (H.L.).

School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., F.-Y.Z., W.L.C., C.L.); andState Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China (H.L.)

出版信息

Plant Physiol. 2014 Jul;165(3):1315-1327. doi: 10.1104/pp.114.239723. Epub 2014 May 19.

Abstract

Flavones are a major class of flavonoids with a wide range of physiological functions in plants. They are constitutively accumulated as C-glycosides and O-linked conjugates in vegetative tissues of grasses. It has long been presumed that the two structural modifications of flavones occur through independent metabolic routes. Previously, we reported that cytochrome P450 93G2 (CYP93G2) functions as a flavanone 2-hydroxylase (F2H) that provides 2-hydroxyflavanones for C-glycosylation in rice (Oryza sativa). Flavone C-glycosides are subsequently formed by dehydratase activity on 2-hydroxyflavanone C-glycosides. On the other hand, O-linked modifications were proposed to proceed after the flavone nucleus is generated. In this study, we demonstrate that CYP93G1, the closest homolog of CYP93G2 in rice, is a bona fide flavone synthase II (FNSII) that catalyzes the direct conversion of flavanones to flavones. In recombinant enzyme assays, CYP93G1 desaturated naringenin and eriodictyol to apigenin and luteolin, respectively. Consistently, transgenic expression of CYP93G1 in Arabidopsis (Arabidopsis thaliana) resulted in the accumulation of different flavone O-glycosides, which are not naturally present in cruciferous plants. Metabolite analysis of a rice CYP93G1 insertion mutant further demonstrated the preferential depletion of tricin O-linked flavanolignans and glycosides. By contrast, redirection of metabolic flow to the biosynthesis of flavone C-glycosides was observed. Our findings established that CYP93G1 is a key branch point enzyme channeling flavanones to the biosynthesis of tricin O-linked conjugates in rice. Functional diversification of F2H and FNSII in the cytochrome P450 CYP93G subfamily may represent a lineage-specific event leading to the prevalent cooccurrence of flavone C- and O-linked derivatives in grasses today.

摘要

黄酮类化合物是一类主要的黄酮,在植物中具有广泛的生理功能。它们以C-糖苷和O-连接的共轭物形式组成性地积累在禾本科植物的营养组织中。长期以来,人们一直认为黄酮的两种结构修饰是通过独立的代谢途径发生的。此前,我们报道细胞色素P450 93G2(CYP93G2)作为黄烷酮2-羟化酶(F2H)发挥作用,为水稻(Oryza sativa)中的C-糖基化提供2-羟基黄烷酮。黄酮C-糖苷随后通过2-羟基黄烷酮C-糖苷的脱水酶活性形成。另一方面,有人提出O-连接修饰在黄酮核生成后进行。在本研究中,我们证明CYP93G1是水稻中CYP93G2最接近的同源物,是一种真正的黄酮合酶II(FNSII),可催化黄烷酮直接转化为黄酮。在重组酶测定中,CYP93G1分别将柚皮素和圣草酚去饱和为芹菜素和木犀草素。一致地,CYP93G1在拟南芥(Arabidopsis thaliana)中的转基因表达导致不同黄酮O-糖苷的积累,这些黄酮O-糖苷在十字花科植物中并非天然存在。水稻CYP93G1插入突变体的代谢物分析进一步证明了小麦黄素O-连接的黄烷醇木脂素和糖苷优先消耗。相比之下,观察到代谢流转向黄酮C-糖苷的生物合成。我们的研究结果表明,CYP93G1是水稻中引导黄烷酮进入小麦黄素O-连接共轭物生物合成的关键分支点酶。细胞色素P450 CYP93G亚家族中F2H和FNSII的功能多样化可能代表了一个谱系特异性事件,导致如今黄酮C-和O-连接衍生物在禾本科植物中普遍共存。

相似文献

1
Cytochrome P450 93G1 Is a Flavone Synthase II That Channels Flavanones to the Biosynthesis of Tricin O-Linked Conjugates in Rice.
Plant Physiol. 2014 Jul;165(3):1315-1327. doi: 10.1104/pp.114.239723. Epub 2014 May 19.
2
Completion of Tricin Biosynthesis Pathway in Rice: Cytochrome P450 75B4 Is a Unique Chrysoeriol 5'-Hydroxylase.
Plant Physiol. 2015 Aug;168(4):1527-36. doi: 10.1104/pp.15.00566. Epub 2015 Jun 16.
3
CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice.
Plant Physiol. 2010 Sep;154(1):324-33. doi: 10.1104/pp.110.161042. Epub 2010 Jul 20.
4
Flavonoids are indispensable for complete male fertility in rice.
J Exp Bot. 2020 Aug 6;71(16):4715-4728. doi: 10.1093/jxb/eraa204.
6
Functional Characterization of a Flavone Synthase That Participates in a Kumquat Flavone Metabolon.
Front Plant Sci. 2022 Mar 2;13:826780. doi: 10.3389/fpls.2022.826780. eCollection 2022.
7
Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae.
Microb Cell Fact. 2018 Jul 9;17(1):107. doi: 10.1186/s12934-018-0952-5.
8
Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum.
J Exp Bot. 2010 Feb;61(4):983-94. doi: 10.1093/jxb/erp364. Epub 2009 Dec 10.
9
Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2005 Dec;71(12):8241-8. doi: 10.1128/AEM.71.12.8241-8248.2005.
10
Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility.
Plant Physiol. 2017 Jun;174(2):972-985. doi: 10.1104/pp.16.01973. Epub 2017 Apr 6.

引用本文的文献

4
CYP75B4-Mediated Tricin and Lignin Accumulation Improve Salt Tolerance in Rice.
Rice (N Y). 2025 Feb 22;18(1):8. doi: 10.1186/s12284-025-00764-w.
5
Engineering for chrysoeriol production using synthetic biology approaches.
Front Plant Sci. 2024 Dec 17;15:1458916. doi: 10.3389/fpls.2024.1458916. eCollection 2024.
6
Tailored biosynthesis of diosmin through reconstitution of the flavonoid pathway in .
Front Plant Sci. 2024 Oct 18;15:1464877. doi: 10.3389/fpls.2024.1464877. eCollection 2024.
7
Grass lignin: biosynthesis, biological roles, and industrial applications.
Front Plant Sci. 2024 Feb 23;15:1343097. doi: 10.3389/fpls.2024.1343097. eCollection 2024.

本文引用的文献

2
Identification of a bifunctional maize C- and O-glucosyltransferase.
J Biol Chem. 2013 Nov 1;288(44):31678-88. doi: 10.1074/jbc.M113.510040. Epub 2013 Sep 17.
4
A single amino acid determines position specificity of an Arabidopsis thaliana CCoAOMT-like O-methyltransferase.
FEBS Lett. 2013 Mar 18;587(6):683-9. doi: 10.1016/j.febslet.2013.01.040. Epub 2013 Feb 14.
5
Flower colour and cytochromes P450.
Philos Trans R Soc Lond B Biol Sci. 2013 Jan 6;368(1612):20120432. doi: 10.1098/rstb.2012.0432. Print 2013 Feb 19.
6
Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology.
Metab Eng. 2013 Mar;16:11-20. doi: 10.1016/j.ymben.2012.11.004. Epub 2012 Dec 13.
9
A genome-wide regulatory framework identifies maize pericarp color1 controlled genes.
Plant Cell. 2012 Jul;24(7):2745-64. doi: 10.1105/tpc.112.098004. Epub 2012 Jul 20.
10
Potent antiviral flavone glycosides from Ficus benjamina leaves.
Fitoterapia. 2012 Mar;83(2):362-7. doi: 10.1016/j.fitote.2011.11.014. Epub 2011 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验