Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, INPT, UPS, IMFT, Allée Camille Soula, Toulouse, France.
J Cereb Blood Flow Metab. 2010 Nov;30(11):1860-73. doi: 10.1038/jcbfm.2010.105. Epub 2010 Jul 21.
We report new results on blood flow modeling over large volumes of cortical gray matter of primate brain. We propose a network method for computing the blood flow, which handles realistic boundary conditions, complex vessel shapes, and complex nonlinear blood rheology. From a detailed comparison of the available models for the blood flow rheology and the phase separation effect, we are able to derive important new results on the impact of network structure on blood pressure, hematocrit, and flow distributions. Our findings show that the network geometry (vessel shapes and diameters), the boundary conditions associated with the arterial inputs and venous outputs, and the effective viscosity of the blood are essential components in the flow distribution. In contrast, we show that the phase separation effect has a minor function in the global microvascular hemodynamic behavior. The behavior of the pressure, hematocrit, and blood flow distributions within the network are described through the depth of the primate cerebral cortex and are discussed.
我们报告了关于灵长类大脑皮质灰质大量血流建模的新结果。我们提出了一种用于计算血流的网络方法,该方法处理现实的边界条件、复杂的血管形状和复杂的非线性血液流变学。通过对血流流变学和相分离效应的现有模型的详细比较,我们能够得出关于网络结构对血压、血细胞比容和血流分布影响的重要新结果。我们的发现表明,网络几何形状(血管形状和直径)、与动脉输入和静脉输出相关的边界条件以及血液的有效粘度是血流分布的重要组成部分。相比之下,我们表明相分离效应在全局微血管血液动力学行为中作用较小。通过灵长类大脑皮层的深度描述了网络内压力、血细胞比容和血流分布的行为,并进行了讨论。