Suppr超能文献

血液作为悬浮液的模拟预测了整个大脑皮层循环中存在深度依赖的血细胞比容。

Simulations of blood as a suspension predicts a depth dependent hematocrit in the circulation throughout the cerebral cortex.

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America.

Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, United States of America.

出版信息

PLoS Comput Biol. 2018 Nov 19;14(11):e1006549. doi: 10.1371/journal.pcbi.1006549. eCollection 2018 Nov.

Abstract

Recent advances in modeling oxygen supply to cortical brain tissue have begun to elucidate the functional mechanisms of neurovascular coupling. While the principal mechanisms of blood flow regulation after neuronal firing are generally known, mechanistic hemodynamic simulations cannot yet pinpoint the exact spatial and temporal coordination between the network of arteries, arterioles, capillaries and veins for the entire brain. Because of the potential significance of blood flow and oxygen supply simulations for illuminating spatiotemporal regulation inside the cortical microanatomy, there is a need to create mathematical models of the entire cerebral circulation with realistic anatomical detail. Our hypothesis is that an anatomically accurate reconstruction of the cerebrocirculatory architecture will inform about possible regulatory mechanisms of the neurovascular interface. In this article, we introduce large-scale networks of the murine cerebral circulation spanning the Circle of Willis, main cerebral arteries connected to the pial network down to the microcirculation in the capillary bed. Several multiscale models were generated from state-of-the-art neuroimaging data. Using a vascular network construction algorithm, the entire circulation of the middle cerebral artery was synthesized. Blood flow simulations indicate a consistent trend of higher hematocrit in deeper cortical layers, while surface layers with shorter vascular path lengths seem to carry comparatively lower red blood cell (RBC) concentrations. Moreover, the variability of RBC flux decreases with cortical depth. These results support the notion that plasma skimming serves a self-regulating function for maintaining uniform oxygen perfusion to neurons irrespective of their location in the blood supply hierarchy. Our computations also demonstrate the practicality of simulating blood flow for large portions of the mouse brain with existing computer resources. The efficient simulation of blood flow throughout the entire middle cerebral artery (MCA) territory is a promising milestone towards the final aim of predicting blood flow patterns for the entire brain.

摘要

最近在模拟皮质脑组织供氧方面的进展已经开始阐明神经血管耦合的功能机制。虽然神经元放电后血流调节的主要机制通常是已知的,但是机械血流动力学模拟仍然无法确定整个大脑中动脉、小动脉、毛细血管和静脉网络之间的确切时空协调。由于血流和氧供应模拟对于阐明皮质微解剖结构内的时空调节具有潜在意义,因此需要创建具有真实解剖细节的整个大脑循环的数学模型。我们的假设是,对脑循环结构的精确解剖重建将为神经血管界面的可能调节机制提供信息。在本文中,我们介绍了跨越Willis 环的小鼠脑循环的大规模网络,将主要的大脑动脉与脑皮层网络连接到毛细血管床中的微循环。从最先进的神经影像学数据生成了几个多尺度模型。使用血管网络构建算法,合成了大脑中动脉的整个循环。血流模拟表明,在较深的皮质层中,红细胞比容(hematocrit)呈一致的升高趋势,而血管路径较短的表面层似乎携带相对较低的红细胞(RBC)浓度。此外,RBC 通量的可变性随皮质深度而降低。这些结果支持这样的观点,即血浆撇除起着自我调节功能,以维持神经元的均匀氧灌注,而与它们在血液供应层次结构中的位置无关。我们的计算还表明,利用现有的计算资源模拟鼠标大脑的大部分血流是可行的。在整个大脑中动脉(MCA)区域高效模拟血流是实现预测整个大脑血流模式的最终目标的一个有希望的里程碑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e3c/6277127/0bba0bd10daf/pcbi.1006549.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验