Etchepareborda Pablo, Federico Alejandro, Kaufmann Guillermo H
Electrónica e Informática, Instituto Nacional de Tecnología Industrial, P.O. Box B1650WAB, B1650KNA San Martín, Argentina.
Appl Opt. 2010 Jul 1;49(19):3753-61. doi: 10.1364/AO.49.003753.
We evaluate and compare the use of competitive neural networks, self-organizing maps, the expectation-maximization algorithm, K-means, and fuzzy C-means techniques as partitional clustering methods, when the sensitivity of the activity measurement of dynamic speckle images needs to be improved. The temporal history of the acquired intensity generated by each pixel is analyzed in a wavelet decomposition framework, and it is shown that the mean energy of its corresponding wavelet coefficients provides a suited feature space for clustering purposes. The sensitivity obtained by using the evaluated clustering techniques is also compared with the well-known methods of Konishi-Fujii, weighted generalized differences, and wavelet entropy. The performance of the partitional clustering approach is evaluated using simulated dynamic speckle patterns and also experimental data.
当需要提高动态散斑图像活动测量的灵敏度时,我们评估并比较了竞争神经网络、自组织映射、期望最大化算法、K均值和模糊C均值技术作为划分聚类方法的应用。在小波分解框架下分析每个像素所采集强度的时间历程,结果表明其相应小波系数的平均能量为聚类目的提供了一个合适的特征空间。还将使用评估的聚类技术获得的灵敏度与著名的小西-藤井方法、加权广义差分法和小波熵进行了比较。使用模拟动态散斑图案和实验数据评估了划分聚类方法的性能。