NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, Denmark.
Nanoscale. 2010 Jan;2(1):134-8. doi: 10.1039/b9nr00206e. Epub 2009 Oct 6.
In situ growth constitutes a very promising strategy for integrating functional nanostructures into device platforms due to the possibility of parallel, high-volume integration. Here, we demonstrate how electron-beam-lithography-defined metal nanostructures can be used to guide the surface diffusion and thereby steer the self-assembly process of organic molecules (here para-hexaphenylene) leading to morphologically well-defined molecular nanofibers with preferred growth directions. Results from a systematic investigation of the influence of the nanofiber growth parameters (such as pinning structure dimensions, substrate temperature, etc.) are presented and an appropriate parameter set is found that enables control over nanofiber length, position and orientation. The ability to achieve such parallel growth control opens a wide range of possible applications including fabrication of polarization-controlled light-emitting arrays and nanofiber growth between electrodes for direct electrical connection in organic LEDs.
在原位生长由于具有并行、大规模集成的可能性,因此是将功能纳米结构集成到器件平台中的一种很有前途的策略。在这里,我们展示了如何使用电子束光刻定义的金属纳米结构来引导表面扩散,从而控制有机分子(这里是 para-六苯)的自组装过程,从而形成具有优选生长方向的形态上定义良好的分子纳米纤维。介绍了对纳米纤维生长参数(例如固定结构尺寸、衬底温度等)影响的系统研究结果,并找到了合适的参数集,从而能够控制纳米纤维的长度、位置和取向。实现这种并行生长控制的能力开辟了广泛的可能应用,包括制造偏振控制发光阵列和在有机发光二极管中电极之间生长纳米纤维以实现直接电连接。