Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universität Bochum, Stiepeler Str. 129, 44801 Bochum, Germany.
J Chem Phys. 2010 Jul 21;133(3):034101. doi: 10.1063/1.3449144.
Developed for complex systems undergoing rare events involving many (meta)stable states, the multiple state transition path sampling aims to sample from an extended path ensemble including all possible trajectories between any pair of (meta)stable states. The key issue for an efficient sampling of the path space in this extended ensemble is sufficient switching between different types of trajectories. When some transitions are much more likely than others the collective sampling of the different path types can become difficult. Here we introduce a Wang-Landau based biasing approach to improve the sampling. We find that the biasing of the multiple state path ensemble does not influence the switching behavior, but does improve the sampling and thus the quality of the individual path ensembles.
针对涉及许多(亚)稳定态的罕见事件的复杂系统,多态跃迁路径采样旨在从扩展的路径集合中采样,该集合包括任意两个(亚)稳定态之间的所有可能轨迹。在这个扩展集合中对路径空间进行有效采样的关键问题是在不同类型的轨迹之间进行充分的切换。当某些跃迁比其他跃迁更有可能发生时,不同路径类型的集体采样可能会变得困难。在这里,我们引入了一种基于 Wang-Landau 的偏置方法来提高采样效率。我们发现,对多态路径集合的偏置不会影响切换行为,但确实可以改善采样,从而提高各个路径集合的质量。