Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, NC 27599, USA.
Antioxid Redox Signal. 2011 Jun 15;14(12):2509-19. doi: 10.1089/ars.2010.3429. Epub 2010 Oct 28.
Repair of double-strand breaks in chromosomal DNA is essential. Unfortunately, a paradigm central to most DNA repair pathways--damaged DNA is replaced by polymerases, by using an intact, undamaged complementary strand as a template--no longer works. The nonhomologous end joining (NHEJ) pathway nevertheless still uses DNA polymerases to help repair double-strand breaks. Bacteria use a member of the archaeo-eukaryal primase superfamily, whereas eukaryotes use multiple members of the polymerase X family. These polymerases can, depending on the biologic context, accurately replace break-associated damage, mitigate loss of flanking DNA, or diversify products of repair. Polymerases specifically implicated in NHEJ are uniquely effective in these roles: relative to canonic polymerases, NHEJ polymerases have been engineered to do more with less.
修复染色体 DNA 的双链断裂至关重要。不幸的是,大多数 DNA 修复途径的核心范式——受损的 DNA被聚合酶取代,聚合酶使用完整的、未受损的互补链作为模板——已不再适用。然而,非同源末端连接 (NHEJ) 途径仍然使用 DNA 聚合酶来帮助修复双链断裂。细菌使用古核真核引物超家族的成员,而真核生物则使用聚合酶 X 家族的多个成员。这些聚合酶可以根据生物背景,准确地替换与断裂相关的损伤,减轻侧翼 DNA 的丢失,或使修复产物多样化。在 NHEJ 中特别涉及的聚合酶在这些作用中具有独特的功效:与规范聚合酶相比,NHEJ 聚合酶以更少的资源完成更多的工作。