Suppr超能文献

通过基质重塑的生化调节体外调节软骨形状可塑性。

In vitro modulation of cartilage shape plasticity by biochemical regulation of matrix remodeling.

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, USA.

出版信息

Tissue Eng Part A. 2011 Jan;17(1-2):17-23. doi: 10.1089/ten.TEA.2010.0177. Epub 2010 Oct 8.

Abstract

With consideration of the need for cartilage grafts of specific sizes and shapes in orthopedics and other fields, immature cartilage explants and grafts have recently been molded in vitro and in vivo. Nonsurgical correction of cartilage deformities and malformations often uses mechanical stimuli and further demonstrates the plasticity of cartilage shape. Cartilage shape plasticity appears to diminish with maturation, coincident with changes in matrix composition. This study's objectives were to characterize shape plasticity of articular cartilage from immature and mature bovines and test whether altering proteoglycan and collagen (COL) remodeling modulates shape plasticity in vitro. Cartilage explants were analyzed fresh on day 0 or after 14 days of culture in the presence of β-D-xyloside to suppress glycosaminoglycan accumulation or β-aminopropionitrile (BAPN) to inhibit lysyl oxidase-mediated COL crosslinking. Culture with β-d-xyloside and BAPN differentially regulated cartilage size, composition, and shape plasticity, with an inverse association between shape plasticity and the ratio of tissue COL to glycosaminoglycan. Retention of a mechanically imposed contour was increased by culture with BAPN compared to day 0 calf cartilage (90% vs. 69%), and BAPN-treated samples had higher shape retention than β-D-xyloside-treated samples for both calf (90% vs. 74%) and adult cartilage (54% vs. 31%). The findings provide quantitative measures of cartilage shape plasticity at immature and mature stages and are consistent with the concept of diminishing shape plasticity with maturation. The ability to modulate cartilage shape plasticity by varying in vitro biochemical conditions may be a useful tool for the formation of contoured chondral grafts.

摘要

考虑到矫形科和其他领域对特定大小和形状的软骨移植物的需求,最近已经在体外和体内对未成熟的软骨外植体和移植物进行了成型。非手术矫正软骨畸形和畸形通常使用机械刺激,并进一步证明了软骨形状的可塑性。软骨形状的可塑性似乎随着成熟而减少,与基质成分的变化一致。本研究的目的是描述来自未成熟和成熟牛的关节软骨的形状可塑性,并测试改变蛋白聚糖和胶原蛋白(COL)重塑是否能调节体外的形状可塑性。软骨外植体在第 0 天或在存在β-D-木糖的情况下培养 14 天后进行新鲜分析,以抑制糖胺聚糖的积累,或用β-氨基丙腈(BAPN)抑制赖氨酰氧化酶介导的 COL 交联。β-D-木糖和 BAPN 的培养差异调节软骨的大小、组成和形状可塑性,形状可塑性与组织 COL 与糖胺聚糖的比例呈反比。与第 0 天小牛软骨(90%比 69%)相比,BAPN 培养增加了机械施加轮廓的保留率,并且 BAPN 处理的样本比β-D-木糖处理的样本具有更高的形状保留率,无论是小牛(90%比 74%)还是成人软骨(54%比 31%)。这些发现提供了未成熟和成熟阶段软骨形状可塑性的定量测量值,与成熟时形状可塑性降低的概念一致。通过改变体外生化条件来调节软骨形状可塑性的能力可能是形成轮廓软骨移植物的有用工具。

相似文献

1
In vitro modulation of cartilage shape plasticity by biochemical regulation of matrix remodeling.
Tissue Eng Part A. 2011 Jan;17(1-2):17-23. doi: 10.1089/ten.TEA.2010.0177. Epub 2010 Oct 8.
2
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with beta-aminopropionitrile.
Osteoarthritis Cartilage. 2008 Jan;16(1):1-11. doi: 10.1016/j.joca.2007.05.019. Epub 2007 Jul 16.
3
Contribution of collagen network features to functional properties of engineered cartilage.
Osteoarthritis Cartilage. 2008 Mar;16(3):359-66. doi: 10.1016/j.joca.2007.07.003. Epub 2007 Aug 21.
4
Treatment of cartilage with beta-aminopropionitrile accelerates subsequent collagen maturation and modulates integrative repair.
J Orthop Res. 2005 May;23(3):594-601. doi: 10.1016/j.orthres.2004.02.015. Epub 2005 Jan 19.
7
Cartilage reshaping via in vitro mechanical loading.
Tissue Eng. 2007 Dec;13(12):2903-11. doi: 10.1089/ten.2007.0053.
8
Substrate Strain Mitigates Effects of β-Aminopropionitrile-Induced Reduction in Enzymatic Crosslinking.
Calcif Tissue Int. 2019 Dec;105(6):660-669. doi: 10.1007/s00223-019-00603-3. Epub 2019 Sep 3.

引用本文的文献

2
Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4832-41. doi: 10.1073/pnas.1414271111. Epub 2014 Oct 27.
3
Shape fidelity of native and engineered human nasal septal cartilage.
Otolaryngol Head Neck Surg. 2013 May;148(5):753-7. doi: 10.1177/0194599813478921. Epub 2013 Feb 20.
4
The effect of beta-xylosides on the chondrogenic differentiation of mesenchymal stem cells.
Histochem Cell Biol. 2013 Jan;139(1):59-74. doi: 10.1007/s00418-012-1017-1. Epub 2012 Aug 23.

本文引用的文献

2
Shape, loading, and motion in the bioengineering design, fabrication, and testing of personalized synovial joints.
J Biomech. 2010 Jan 5;43(1):156-65. doi: 10.1016/j.jbiomech.2009.09.021. Epub 2009 Oct 7.
3
Non-surgical correction of congenital deformities of the auricle: a systematic review of the literature.
J Plast Reconstr Aesthet Surg. 2009 Jun;62(6):727-36. doi: 10.1016/j.bjps.2009.01.020. Epub 2009 Mar 27.
4
Asymmetrical strain distributions and neutral axis location of cartilage in flexure.
J Biomech. 2009 Feb 9;42(3):325-30. doi: 10.1016/j.jbiomech.2008.11.009. Epub 2008 Dec 30.
5
Articular cartilage tensile integrity: modulation by matrix depletion is maturation-dependent.
Arch Biochem Biophys. 2008 Jun 1;474(1):175-82. doi: 10.1016/j.abb.2008.03.012. Epub 2008 Mar 21.
8
Cartilage reshaping via in vitro mechanical loading.
Tissue Eng. 2007 Dec;13(12):2903-11. doi: 10.1089/ten.2007.0053.
9
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with beta-aminopropionitrile.
Osteoarthritis Cartilage. 2008 Jan;16(1):1-11. doi: 10.1016/j.joca.2007.05.019. Epub 2007 Jul 16.
10
Articular cartilage mechanical and biochemical property relations before and after in vitro growth.
J Biomech. 2007;40(16):3607-14. doi: 10.1016/j.jbiomech.2007.06.005. Epub 2007 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验