Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy.
Br J Pharmacol. 2010 Aug;160(7):1652-61. doi: 10.1111/j.1476-5381.2010.00822.x.
ClC-K kidney Cl(-) channels are important for renal and inner ear transepithelial Cl(-) transport, and are potentially interesting pharmacological targets. They are modulated by niflumic acid (NFA), a non-steroidal anti-inflammatory drug, in a biphasic way: NFA activates ClC-Ka at low concentrations, but blocks the channel above approximately 1 mM. We attempted to identify the amino acids involved in the activation of ClC-Ka by NFA.
We used site-directed mutagenesis and two-electrode voltage clamp analysis of wild-type and mutant channels expressed in Xenopus oocytes. Guided by the crystal structure of a bacterial CLC homolog, we screened 97 ClC-Ka mutations for alterations of NFA effects.
Mutations of five residues significantly reduced the potentiating effect of NFA. Two of these (G167A and F213A) drastically altered general gating properties and are unlikely to be involved in NFA binding. The three remaining mutants (L155A, G345S and A349E) severely impaired or abolished NFA potentiation.
The three key residues identified (L155, G345, A349) are localized in two different protein regions that, based on the crystal structure of bacterial CLC homologs, are expected to be exposed to the extracellular side of the channel, relatively close to each other, and are thus good candidates for being part of the potentiating NFA binding site. Alternatively, the protein region identified mediates conformational changes following NFA binding. Our results are an important step towards the development of ClC-Ka activators for treating Bartter syndrome types III and IV with residual channel activity.
ClC-K 肾脏 Cl(-)通道对于肾脏和内耳上皮细胞的 Cl(-)转运非常重要,并且是潜在有趣的药理学靶点。它们被非甾体抗炎药尼氟灭酸(NFA)以双相方式调节:NFA 在低浓度下激活 ClC-Ka,但在约 1mM 以上时阻断通道。我们试图确定 NFA 激活 ClC-Ka 所涉及的氨基酸。
我们使用定点突变和双电极电压钳分析在非洲爪蟾卵母细胞中表达的野生型和突变体通道。根据细菌 CLC 同源物的晶体结构,我们筛选了 97 个 ClC-Ka 突变体,以改变 NFA 效应。
五个残基的突变显著降低了 NFA 的增强作用。其中两个(G167A 和 F213A)严重改变了一般门控特性,不太可能参与 NFA 结合。其余三个突变体(L155A、G345S 和 A349E)严重损害或消除了 NFA 的增强作用。
鉴定的三个关键残基(L155、G345、A349)定位于两个不同的蛋白质区域,根据细菌 CLC 同源物的晶体结构,预计这些区域暴露在通道的细胞外侧,彼此相对接近,因此是增强 NFA 结合位点的候选区域。或者,鉴定的蛋白质区域介导 NFA 结合后构象变化。我们的研究结果是开发治疗具有残余通道活性的巴特综合征 III 型和 IV 型的 ClC-Ka 激活剂的重要步骤。