Suppr超能文献

基于马尔可夫随机模型的扩散张量磁共振图像算法研究

[Research on algorithms based on Markov random models for diffusion tensor-magnetic resonance images].

作者信息

Peng Jie, Lü Qing-wen, Feng Yan-qiu, Gao Yuan-yuan, Chen Wu-fan

机构信息

School of Biomedical Engineering, Southern Medical University. Guangzhou 510515, China.E-mail:

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2010 Jul;30(7):1562-4, 1572.

Abstract

With the utilization of diffusion tensor information of image voxels, a novel MRF (Markov Random Field) segmentation algorithm was proposed for diffusion tensor MRI (DT-MRI) images benefitted from the introduction of Frobenius norm. The comparison of the segmentation effects between the proposed algorithm and K-means segmentation algorithm for DT-MRI image was made, which showed that the new algorithm could segment the DT-MRI images more accurately than the K-means algorithm. Moreover, with the same segmentation algorithm of MRF, better outcomes were achieved in DT-MRI than in conventional MRI (T2WI) image.

摘要

利用图像体素的扩散张量信息,基于Frobenius范数提出了一种用于扩散张量磁共振成像(DT-MRI)图像的新型马尔可夫随机场(MRF)分割算法。对所提算法与K均值分割算法在DT-MRI图像上的分割效果进行了比较,结果表明新算法在DT-MRI图像分割上比K均值算法更准确。此外,在相同的MRF分割算法下,DT-MRI图像的分割效果优于传统磁共振成像(T2WI)图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验