Suppr超能文献

基于 MRF 和社会算法混合的磁共振图像脑组织分割。

Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms.

机构信息

Department of Computer Engineering and Information Technology, Shahrood University of Technology, Shahrood, Iran.

出版信息

Med Image Anal. 2012 May;16(4):840-8. doi: 10.1016/j.media.2012.01.001. Epub 2012 Feb 1.

Abstract

Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy.

摘要

有效的磁共振图像(MRI)异常检测和诊断需要强大的分割策略。由于手动分割是一项耗时的任务,需要投入宝贵的人力资源,因此自动 MRI 分割受到了极大的关注。为此,已经应用了各种技术。然而,与其他方法相比,基于马尔可夫随机场(MRF)的算法在噪声图像中产生了合理的结果。MRF 寻求最小化能量函数的标签场。传统的最小化方法,模拟退火(SA),使用蒙特卡罗模拟来访问具有沉重计算负担的最小解。出于这个原因,MRF 很少在实时处理环境中使用。本文提出了一种基于 MRF 和社会算法混合的新方法,其中包含蚁群优化(ACO)和闲聊算法,可以用于实时环境中的单光谱和多光谱 MRI 分割。将 ACO 与闲聊算法结合使用有助于利用邻域信息找到更好的路径。因此,这种交互作用使算法更快地收敛到最优解。对幻影和真实图像进行了几次实验。结果表明,所提出的算法在速度和准确性方面优于传统的 MRF 和 MRF-ACO 混合算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验