Department of Medical Genetics, CHU Sainte-Justine, University of Montreal, Montreal H3T 1C5, Canada.
J Biol Chem. 2010 Oct 8;285(41):31233-42. doi: 10.1074/jbc.M110.141150. Epub 2010 Jul 22.
Heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT) catalyzes the transmembrane acetylation of heparan sulfate in lysosomes required for its further catabolism. Inherited deficiency of HGSNAT in humans results in lysosomal storage of heparan sulfate and causes the severe neurodegenerative disease, mucopolysaccharidosis IIIC (MPS IIIC). Previously we have cloned the HGSNAT gene, identified molecular defects in MPS IIIC patients, and found that all missense mutations prevented normal folding and trafficking of the enzyme. Therefore characterization of HGSNAT biogenesis and intracellular trafficking became of central importance for understanding the molecular mechanism underlying the disease and developing future therapies. In the current study we show that HGSNAT is synthesized as a catalytically inactive 77-kDa precursor that is transported to the lysosomes via an adaptor protein-mediated pathway that involves conserved tyrosine- and dileucine-based lysosomal targeting signals in its C-terminal cytoplasmic domain with a contribution from a dileucine-based signal in the N-terminal cytoplasmic loop. In the lysosome, the precursor is cleaved into a 29-kDa N-terminal α-chain and a 48-kDa C-terminal β-chain, and assembled into active ∼440-kDa oligomers. The subunits are held together by disulfide bonds between at least two cysteine residues (Cys(123) and Cys(434)) in the lysosomal luminal loops of the enzyme. We speculate that proteolytic cleavage allows the nucleophile residue, His(269), in the active site to access the substrate acetyl-CoA in the cytoplasm, for further transfer of the acetyl group to the terminal glucosamine on heparan sulfate. Altogether our results identify intralysosomal oligomerization and proteolytic cleavage as two steps crucial for functional activation of HGSNAT.
乙酰肝素 N-乙酰氨基葡萄糖转移酶(HGSNAT)催化溶酶体中乙酰肝素的跨膜乙酰化,这是其进一步分解代谢所必需的。人类 HGSNAT 的遗传性缺乏导致乙酰肝素的溶酶体储存,并导致严重的神经退行性疾病粘多糖贮积症 IIIIC(MPS IIIC)。以前,我们已经克隆了 HGSNAT 基因,鉴定了 MPS IIIC 患者的分子缺陷,并发现所有错义突变都阻止了酶的正常折叠和运输。因此,HGSNAT 生物发生和细胞内运输的特征对于理解疾病的分子机制和开发未来的治疗方法变得至关重要。在当前的研究中,我们表明 HGSNAT 合成为一种无催化活性的 77kDa 前体,通过衔接蛋白介导的途径运输到溶酶体,该途径涉及其 C 端细胞质结构域中的保守酪氨酸和二亮氨酸基溶酶体靶向信号,以及 N 端细胞质环中的二亮氨酸基信号的贡献。在溶酶体中,前体被切割成一个 29kDa 的 N 端α链和一个 48kDa 的 C 端β链,并组装成活性约 440kDa 的寡聚物。亚基通过酶的溶酶体腔环中至少两个半胱氨酸残基(Cys(123)和 Cys(434))之间的二硫键结合在一起。我们推测,蛋白水解切割允许活性位点中的亲核残基 His(269)进入细胞质中的乙酰辅酶 A 底物,以便进一步将乙酰基转移到乙酰肝素的末端葡萄糖胺上。总之,我们的结果确定了溶酶体内寡聚化和蛋白水解切割是 HGSNAT 功能激活的两个关键步骤。