Suppr超能文献

分析乙酰辅酶 A:α-葡糖胺-N-乙酰转移酶在肝素硫酸生物发生中的作用,为粘多糖贮积症 III 型中该酶完全缺乏的机制提供了线索。

Analysis of the biogenesis of heparan sulfate acetyl-CoA:alpha-glucosaminide N-acetyltransferase provides insights into the mechanism underlying its complete deficiency in mucopolysaccharidosis IIIC.

机构信息

Department of Medical Genetics, CHU Sainte-Justine, University of Montreal, Montreal H3T 1C5, Canada.

出版信息

J Biol Chem. 2010 Oct 8;285(41):31233-42. doi: 10.1074/jbc.M110.141150. Epub 2010 Jul 22.

Abstract

Heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT) catalyzes the transmembrane acetylation of heparan sulfate in lysosomes required for its further catabolism. Inherited deficiency of HGSNAT in humans results in lysosomal storage of heparan sulfate and causes the severe neurodegenerative disease, mucopolysaccharidosis IIIC (MPS IIIC). Previously we have cloned the HGSNAT gene, identified molecular defects in MPS IIIC patients, and found that all missense mutations prevented normal folding and trafficking of the enzyme. Therefore characterization of HGSNAT biogenesis and intracellular trafficking became of central importance for understanding the molecular mechanism underlying the disease and developing future therapies. In the current study we show that HGSNAT is synthesized as a catalytically inactive 77-kDa precursor that is transported to the lysosomes via an adaptor protein-mediated pathway that involves conserved tyrosine- and dileucine-based lysosomal targeting signals in its C-terminal cytoplasmic domain with a contribution from a dileucine-based signal in the N-terminal cytoplasmic loop. In the lysosome, the precursor is cleaved into a 29-kDa N-terminal α-chain and a 48-kDa C-terminal β-chain, and assembled into active ∼440-kDa oligomers. The subunits are held together by disulfide bonds between at least two cysteine residues (Cys(123) and Cys(434)) in the lysosomal luminal loops of the enzyme. We speculate that proteolytic cleavage allows the nucleophile residue, His(269), in the active site to access the substrate acetyl-CoA in the cytoplasm, for further transfer of the acetyl group to the terminal glucosamine on heparan sulfate. Altogether our results identify intralysosomal oligomerization and proteolytic cleavage as two steps crucial for functional activation of HGSNAT.

摘要

乙酰肝素 N-乙酰氨基葡萄糖转移酶(HGSNAT)催化溶酶体中乙酰肝素的跨膜乙酰化,这是其进一步分解代谢所必需的。人类 HGSNAT 的遗传性缺乏导致乙酰肝素的溶酶体储存,并导致严重的神经退行性疾病粘多糖贮积症 IIIIC(MPS IIIC)。以前,我们已经克隆了 HGSNAT 基因,鉴定了 MPS IIIC 患者的分子缺陷,并发现所有错义突变都阻止了酶的正常折叠和运输。因此,HGSNAT 生物发生和细胞内运输的特征对于理解疾病的分子机制和开发未来的治疗方法变得至关重要。在当前的研究中,我们表明 HGSNAT 合成为一种无催化活性的 77kDa 前体,通过衔接蛋白介导的途径运输到溶酶体,该途径涉及其 C 端细胞质结构域中的保守酪氨酸和二亮氨酸基溶酶体靶向信号,以及 N 端细胞质环中的二亮氨酸基信号的贡献。在溶酶体中,前体被切割成一个 29kDa 的 N 端α链和一个 48kDa 的 C 端β链,并组装成活性约 440kDa 的寡聚物。亚基通过酶的溶酶体腔环中至少两个半胱氨酸残基(Cys(123)和 Cys(434))之间的二硫键结合在一起。我们推测,蛋白水解切割允许活性位点中的亲核残基 His(269)进入细胞质中的乙酰辅酶 A 底物,以便进一步将乙酰基转移到乙酰肝素的末端葡萄糖胺上。总之,我们的结果确定了溶酶体内寡聚化和蛋白水解切割是 HGSNAT 功能激活的两个关键步骤。

相似文献

引用本文的文献

3
Structure and mechanism of lysosome transmembrane acetylation by HGSNAT.溶酶体跨膜乙酰化的结构与机制:HGSNAT 的作用
Nat Struct Mol Biol. 2024 Oct;31(10):1502-1508. doi: 10.1038/s41594-024-01315-5. Epub 2024 May 20.
6
Delivering gene therapy for mucopolysaccharide diseases.为黏多糖病提供基因治疗。
Front Mol Biosci. 2022 Sep 12;9:965089. doi: 10.3389/fmolb.2022.965089. eCollection 2022.

本文引用的文献

6
Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.去污剂结合解释了膜蛋白在SDS-PAGE中的异常迁移。
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1760-5. doi: 10.1073/pnas.0813167106. Epub 2009 Jan 30.
7
Molecular and cellular basis of lysosomal transmembrane protein dysfunction.溶酶体跨膜蛋白功能障碍的分子和细胞基础。
Biochim Biophys Acta. 2009 Apr;1793(4):636-49. doi: 10.1016/j.bbamcr.2008.12.008. Epub 2008 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验