Suppr超能文献

口腔链球菌与苹果酸-乳酸发酵相关的碱性产物产生及其对酸、氧化或饥饿损伤的保护作用。

Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage.

机构信息

Department of Microbiology and Immunology, Center for Oral Biology, University of Rochester Medical Center, NY 14642-8672, USA.

出版信息

Can J Microbiol. 2010 Jul;56(7):539-47. doi: 10.1139/w10-039.

Abstract

Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. L-Malic acid was rapidly fermented to L-lactic acid and CO(2) by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses.

摘要

口腔链球菌产生碱被认为对牙菌斑生态学和龋齿缓和很重要。最近,发现苹果酸-乳酸发酵(MLF)是口腔链球菌产生碱的主要系统,包括变形链球菌。在本文所述工作中,我们的主要目标是进一步定义口腔链球菌 MLF 的生理学和遗传学及其在防止代谢应激损伤中的作用。诱导的野生型变形链球菌细胞可快速将 L-苹果酸发酵为 L-乳酸和 CO₂,而 mleS(苹果酸-乳酸酶)或 mleP(苹果酸透性酶)缺失突变体则不能。mleR(连续调节基因)的突变体具有中等的 MLF 能力。失去催化 MLF 的能力导致失去对致死酸化的保护能力。还发现 MLF 对氧化和饥饿损伤具有保护作用。在 pH 值为 4 或 5 的低 pH 值下,变形链球菌从苹果酸产生碱的能力大于其从糖酵解产生酸的能力。MLF 与链球菌 sanguinis 的精氨酸脱亚氨酶系统协同作用产生碱,但与唾液链球菌的脲酶不协同作用。苹果酸-乳酸发酵显然是口腔链球菌产生碱和抵御环境压力的主要过程。

相似文献

3
Malolactic fermentation by Streptococcus mutans.
FEMS Microbiol Lett. 2007 Jul;272(2):196-201. doi: 10.1111/j.1574-6968.2007.00744.x. Epub 2007 May 8.
4
Expression of the malolactic enzyme gene (mle) from Lactobacillus plantarum under winemaking conditions.
Curr Microbiol. 2011 Jun;62(6):1682-8. doi: 10.1007/s00284-011-9914-4. Epub 2011 Mar 16.
5
Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.
Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.01697-17. Print 2018 Jan 15.
6
Antimicrobial actions of α-mangostin against oral streptococci.
Can J Microbiol. 2011 Mar;57(3):217-25. doi: 10.1139/W10-122.
7
Measures to improve wine malolactic fermentation.
Appl Microbiol Biotechnol. 2019 Mar;103(5):2033-2051. doi: 10.1007/s00253-018-09608-8. Epub 2019 Jan 16.
8
Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation.
FEBS Lett. 1997 Jun 30;410(2-3):452-6. doi: 10.1016/s0014-5793(97)00637-6.
9
Induction of simultaneous and sequential malolactic fermentation in durian wine.
Int J Food Microbiol. 2016 Aug 2;230:1-9. doi: 10.1016/j.ijfoodmicro.2016.04.006. Epub 2016 Apr 13.
10
Growth and metabolism of Oenococcus oeni for malolactic fermentation under pressure.
Lett Appl Microbiol. 2016 Dec;63(6):426-433. doi: 10.1111/lam.12664. Epub 2016 Oct 17.

引用本文的文献

2
An underlying mechanism for MleR activating the malolactic enzyme pathway to enhance acid tolerance in L9.
Appl Environ Microbiol. 2023 Sep 28;89(9):e0097423. doi: 10.1128/aem.00974-23. Epub 2023 Sep 8.
3
in Staphylococcus aureus Contributes to Microaerobic Metabolic Activity, Abscess Formation, and Survival in Macrophages.
Microbiol Spectr. 2023 Jun 15;11(3):e0090923. doi: 10.1128/spectrum.00909-23. Epub 2023 Apr 13.
4
Genomic and phenotypic characterization of isolates suggests key gene clusters in regulating its interaction with .
Front Microbiol. 2022 Aug 12;13:945108. doi: 10.3389/fmicb.2022.945108. eCollection 2022.
5
AhrC Negatively Regulates Streptococcus mutans Arginine Biosynthesis.
Microbiol Spectr. 2022 Aug 31;10(4):e0072122. doi: 10.1128/spectrum.00721-22. Epub 2022 Aug 8.
7
Evaluation of Clinical, Biochemical and Microbiological Markers Related to Dental Caries.
Int J Environ Res Public Health. 2021 Jun 4;18(11):6049. doi: 10.3390/ijerph18116049.
8
Genetic Mutations That Confer Fluoride Resistance Modify Gene Expression and Virulence Traits of .
Microorganisms. 2021 Apr 15;9(4):849. doi: 10.3390/microorganisms9040849.
10
Global Transcriptomic Analysis and Function Identification of Malolactic Enzyme Pathway of L9 in Response to Bile Stress.
Front Microbiol. 2018 Aug 23;9:1978. doi: 10.3389/fmicb.2018.01978. eCollection 2018.

本文引用的文献

5
Malolactic fermentation by Streptococcus mutans.
FEMS Microbiol Lett. 2007 Jul;272(2):196-201. doi: 10.1111/j.1574-6968.2007.00744.x. Epub 2007 May 8.
6
Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes.
J Biol Chem. 2007 Jan 12;282(2):929-37. doi: 10.1074/jbc.M607646200. Epub 2006 Nov 13.
8
Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159.
J Bacteriol. 2006 Feb;188(3):834-41. doi: 10.1128/JB.188.3.834-841.2006.
9
The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism.
Microbiol Mol Biol Rev. 2005 Dec;69(4):665-95. doi: 10.1128/MMBR.69.4.665-695.2005.
10
Transport and metabolism of citrate by Streptococcus mutans.
J Bacteriol. 2005 Jul;187(13):4451-6. doi: 10.1128/JB.187.13.4451-4456.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验