Suppr超能文献

使用线性和非线性处理技术的噼啪声声学胸部图像。

Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques.

机构信息

Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico City, Mexico.

出版信息

Med Biol Eng Comput. 2011 Jan;49(1):15-24. doi: 10.1007/s11517-010-0663-5. Epub 2010 Jul 21.

Abstract

In this study, a novel approach is proposed, the imaging of crackle sounds distribution on the thorax based on processing techniques that could contend with the detection and count of crackles; hence, the normalized fractal dimension (NFD), the univariate AR modeling combined with a supervised neural network (UAR-SNN), and the time-variant autoregressive (TVAR) model were assessed. The proposed processing schemes were tested inserting simulated crackles in normal lung sounds acquired by a multichannel system on the posterior thoracic surface. In order to evaluate the robustness of the processing schemes, different scenarios were created by manipulating the number of crackles, the type of crackles, the spatial distribution, and the signal to noise ratio (SNR) at different pulmonary regions. The results indicate that TVAR scheme showed the best performance, compared with NFD and UAR-SNN schemes, for detecting and counting simulated crackles with an average specificity very close to 100%, and average sensitivity of 98 ± 7.5% even with overlapped crackles and with SNR corresponding to a scaling factor as low as 1.5. Finally, the performance of the TVAR scheme was tested against a human expert using simulated and real acoustic information. We conclude that a confident image of crackle sounds distribution by crackles counting using TVAR on the thoracic surface is thoroughly possible. The crackles imaging might represent an aid to the clinical evaluation of pulmonary diseases that produce this sort of adventitious discontinuous lung sounds.

摘要

在这项研究中,提出了一种新方法,即基于能够处理检测和计数喘鸣的技术,对胸部喘鸣声音分布进行成像;因此,评估了归一化分形维数(NFD)、与监督神经网络(UAR-SNN)结合的单变量 AR 建模以及时变自回归(TVAR)模型。在所提出的处理方案中,通过在胸后表面的多通道系统上获取的正常肺音中插入模拟喘鸣声来进行测试。为了评估处理方案的鲁棒性,通过操纵喘鸣声的数量、喘鸣声的类型、空间分布以及不同肺部区域的信噪比(SNR),创建了不同的场景。结果表明,与 NFD 和 UAR-SNN 方案相比,TVAR 方案在检测和计数模拟喘鸣声方面表现出最佳性能,平均特异性非常接近 100%,平均灵敏度为 98±7.5%,即使存在重叠的喘鸣声,且 SNR 对应于低至 1.5 的比例因子。最后,使用模拟和真实声学信息对 TVAR 方案的性能进行了测试。我们得出结论,通过在胸部表面使用 TVAR 对喘鸣计数进行喘鸣声音分布的有信心的图像是完全可能的。喘鸣成像可能代表对产生这种间断性肺音的肺部疾病进行临床评估的一种辅助手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验