Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America.
PLoS Pathog. 2010 Jul 22;6(7):e1001013. doi: 10.1371/journal.ppat.1001013.
Epigenetic modifications of the herpesviral genome play a key role in the transcriptional control of latent and lytic genes during a productive viral lifecycle. In this study, we describe for the first time a comprehensive genome-wide ChIP-on-Chip analysis of the chromatin associated with the Kaposi's sarcoma-associated herpesvirus (KSHV) genome during latency and lytic reactivation. Depending on the gene expression class, different combinations of activating [acetylated H3 (AcH3) and H3K4me3] and repressive [H3K9me3 and H3K27me3] histone modifications are associated with the viral latent genome, which changes upon reactivation in a manner that is correlated with their expression. Specifically, both the activating marks co-localize on the KSHV latent genome, as do the repressive marks. However, the activating and repressive histone modifications are mutually exclusive of each other on the bulk of the latent KSHV genome. The genomic region encoding the IE genes ORF50 and ORF48 possesses the features of a bivalent chromatin structure characterized by the concomitant presence of the activating H3K4me3 and the repressive H3K27me3 marks during latency, which rapidly changes upon reactivation with increasing AcH3 and H3K4me3 marks and decreasing H3K27me3. Furthermore, EZH2, the H3K27me3 histone methyltransferase of the Polycomb group proteins (PcG), colocalizes with the H3K27me3 mark on the entire KSHV genome during latency, whereas RTA-mediated reactivation induces EZH2 dissociation from the genomic regions encoding IE and E genes concurrent with decreasing H3K27me3 level and increasing IE/E lytic gene expression. Moreover, either the inhibition of EZH2 expression by a small molecule inhibitor DZNep and RNAi knockdown, or the expression of H3K27me3-specific histone demethylases apparently induced the KSHV lytic gene expression cascade. These data indicate that histone modifications associated with the KSHV latent genome are involved in the regulation of latency and ultimately in the control of the temporal and sequential expression of the lytic gene cascade. In addition, the PcG proteins play a critical role in the control of KSHV latency by maintaining a reversible heterochromatin on the KSHV lytic genes. Thus, the regulation of the spatial and temporal association of the PcG proteins with the KSHV genome may be crucial for propagating the KSHV lifecycle.
疱疹病毒基因组的表观遗传修饰在病毒生命周期中的潜伏和裂解基因的转录调控中起着关键作用。在这项研究中,我们首次描述了对潜伏和裂解再激活期间卡波济肉瘤相关疱疹病毒 (KSHV) 基因组相关染色质进行全基因组 ChIP-on-Chip 分析。根据基因表达类别,与病毒潜伏基因组相关的不同组合的激活 [乙酰化 H3 (AcH3) 和 H3K4me3] 和抑制 [H3K9me3 和 H3K27me3] 组蛋白修饰与病毒潜伏基因组相关,再激活时其组合发生变化,且与基因表达相关。具体而言,激活标记共同定位于 KSHV 潜伏基因组上,抑制标记也是如此。然而,在潜伏 KSHV 基因组的大部分区域,激活和抑制组蛋白修饰是相互排斥的。编码 IE 基因 ORF50 和 ORF48 的基因组区域具有二价染色质结构的特征,在潜伏期间同时存在激活的 H3K4me3 和抑制的 H3K27me3 标记,再激活时,这些标记迅速发生变化,伴随着 AcH3 和 H3K4me3 标记的增加和 H3K27me3 的减少。此外,PcG 蛋白的 H3K27me3 组蛋白甲基转移酶 EZH2 在潜伏期间与 H3K27me3 标记共同定位于整个 KSHV 基因组上,而 RTA 介导的再激活伴随着 H3K27me3 水平的降低和 IE/E 裂解基因表达的增加,诱导 EZH2 从编码 IE 和 E 基因的基因组区域中解离。此外,小分子抑制剂 DZNep 和 RNAi 敲低抑制 EZH2 的表达,或表达 H3K27me3 特异性组蛋白去甲基酶,均能明显诱导 KSHV 裂解基因表达级联。这些数据表明,与 KSHV 潜伏基因组相关的组蛋白修饰参与了潜伏的调节,并最终控制了裂解基因级联的时空表达。此外,PcG 蛋白通过在 KSHV 裂解基因上维持可逆异染色质,在控制 KSHV 潜伏中起着关键作用。因此,PcG 蛋白与 KSHV 基因组的空间和时间关联的调节对于传播 KSHV 生命周期可能至关重要。