Suppr超能文献

甲型 H1N1/2009 流感血凝素疫苗在大肠杆菌中生产。

An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli.

机构信息

Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Monterrey, México.

出版信息

PLoS One. 2010 Jul 22;5(7):e11694. doi: 10.1371/journal.pone.0011694.

Abstract

BACKGROUND

The A/H1N1/2009 influenza pandemic made evident the need for faster and higher-yield methods for the production of influenza vaccines. Platforms based on virus culture in mammalian or insect cells are currently under investigation. Alternatively, expression of fragments of the hemagglutinin (HA) protein in prokaryotic systems can potentially be the most efficacious strategy for the manufacture of large quantities of influenza vaccine in a short period of time. Despite experimental evidence on the immunogenic potential of HA protein constructs expressed in bacteria, it is still generally accepted that glycosylation should be a requirement for vaccine efficacy.

METHODOLOGY/PRINCIPAL FINDINGS: We expressed the globular HA receptor binding domain, referred to here as HA(63-286)-RBD, of the influenza A/H1N1/2009 virus in Escherichia coli using a simple, robust and scalable process. The recombinant protein was refolded and purified from the insoluble fraction of the cellular lysate as a single species. Recombinant HA(63-286)-RBD appears to be properly folded, as shown by analytical ultracentrifugation and bio-recognition assays. It binds specifically to serum antibodies from influenza A/H1N1/2009 patients and was found to be immunogenic, to be capable of triggering the production of neutralizing antibodies, and to have protective activity in the ferret model.

CONCLUSIONS/SIGNIFICANCE: Projections based on our production/purification data indicate that this strategy could yield up to half a billion doses of vaccine per month in a medium-scale pharmaceutical production facility equipped for bacterial culture. Also, our findings demonstrate that glycosylation is not a mandatory requirement for influenza vaccine efficacy.

摘要

背景

甲型 H1N1/2009 流感大流行凸显了需要更快、更高产的方法来生产流感疫苗。目前正在研究基于哺乳动物或昆虫细胞培养的病毒的平台。或者,在原核系统中表达血凝素 (HA) 蛋白片段可能是在短时间内制造大量流感疫苗的最有效策略。尽管有实验证据表明在细菌中表达的 HA 蛋白构建体具有免疫原性,但人们仍然普遍认为糖基化应该是疫苗效力的要求。

方法/主要发现:我们使用简单、稳健和可扩展的过程在大肠杆菌中表达了流感 A/H1N1/2009 病毒的球形 HA 受体结合域,这里称为 HA(63-286)-RBD。重组蛋白从细胞裂解物的不可溶部分中作为单一物种进行复性和纯化。重组 HA(63-286)-RBD 似乎正确折叠,如分析超速离心和生物识别分析所示。它特异性地与来自甲型 H1N1/2009 患者的血清抗体结合,并且具有免疫原性,能够触发中和抗体的产生,并在雪貂模型中具有保护活性。

结论/意义:基于我们的生产/纯化数据的预测表明,这种策略可以在配备有细菌培养设备的中等规模制药生产设施中每月生产多达 5 亿剂疫苗。此外,我们的研究结果表明,糖基化不是流感疫苗效力的强制性要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb3c/2908544/7861927bd494/pone.0011694.g001.jpg

相似文献

1
An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli.
PLoS One. 2010 Jul 22;5(7):e11694. doi: 10.1371/journal.pone.0011694.
4
Evaluation of a modified vaccinia virus Ankara (MVA)-based candidate pandemic influenza A/H1N1 vaccine in the ferret model.
J Gen Virol. 2010 Nov;91(Pt 11):2745-52. doi: 10.1099/vir.0.024885-0. Epub 2010 Aug 18.
5
Immunogenicity and safety of H1N1 influenza hemagglutinin protein expressed in a baculovirus system.
Microbiol Immunol. 2013 Sep;57(9):660-4. doi: 10.1111/1348-0421.12079.
6
HA1-2-fljB Vaccine Induces Immune Responses against Pandemic Swine-Origin H1N1 Influenza Virus in Mice.
J Mol Microbiol Biotechnol. 2016;26(6):422-432. doi: 10.1159/000448895. Epub 2016 Oct 8.
8
A plant-produced influenza subunit vaccine protects ferrets against virus challenge.
Influenza Other Respir Viruses. 2008 Jan;2(1):33-40. doi: 10.1111/j.1750-2659.2008.00037.x.
10

引用本文的文献

1
Duckweeds as edible vaccines in the animal farming industry.
3 Biotech. 2024 Oct;14(10):222. doi: 10.1007/s13205-024-04074-8. Epub 2024 Sep 6.
3
Production of Influenza Virus Glycoproteins Using Insect Cells.
Methods Mol Biol. 2024;2762:43-70. doi: 10.1007/978-1-0716-3666-4_4.
5
Immunoinformatic analysis of the whole proteome for vaccine design: An application to .
Front Immunol. 2022 Aug 30;13:942907. doi: 10.3389/fimmu.2022.942907. eCollection 2022.
6
Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9.
Sci Rep. 2021 Dec 29;11(1):24485. doi: 10.1038/s41598-021-03932-2.
7
8
Influenza Hemagglutinin Head Domain Mimicry by Rational Design.
Protein J. 2020 Oct;39(5):434-448. doi: 10.1007/s10930-020-09930-z. Epub 2020 Oct 17.
10
Animal Cell Expression Systems.
Adv Biochem Eng Biotechnol. 2021;175:1-36. doi: 10.1007/10_2017_31.

本文引用的文献

2
Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus.
Science. 2010 Apr 16;328(5976):357-60. doi: 10.1126/science.1186430. Epub 2010 Mar 25.
3
Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin.
PLoS One. 2010 Jan 1;5(1):e8553. doi: 10.1371/journal.pone.0008553.
5
Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study.
PLoS One. 2009 Dec 3;4(12):e8164. doi: 10.1371/journal.pone.0008164.
6
Evolutionary trends of A(H1N1) influenza virus hemagglutinin since 1918.
PLoS One. 2009 Nov 17;4(11):e7789. doi: 10.1371/journal.pone.0007789.
7
Glycans on influenza hemagglutinin affect receptor binding and immune response.
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18137-42. doi: 10.1073/pnas.0909696106. Epub 2009 Oct 12.
8
The transmissibility and control of pandemic influenza A (H1N1) virus.
Science. 2009 Oct 30;326(5953):729-33. doi: 10.1126/science.1177373. Epub 2009 Sep 10.
10
Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production.
Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14802-7. doi: 10.1073/pnas.0905912106. Epub 2009 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验