Department of Medical Physics, Division of Cancer and Surgery, Oslo University Hospital, Norway.
Radiother Oncol. 2010 Aug;96(2):153-60. doi: 10.1016/j.radonc.2010.06.004.
Image-guided brachytherapy in cervical cancer is increasingly replacing X-ray based dose planning. In image-guided brachytherapy the geometry of the applicator is extracted from the patient 3D images and introduced into the treatment planning system; a process referred to as applicator reconstruction. Due to the steep brachytherapy dose gradients, reconstruction errors can lead to major dose deviations in target and organs at risk. Appropriate applicator commissioning and reconstruction methods must be implemented in order to minimise uncertainties and to avoid accidental errors. Applicator commissioning verifies the location of source positions in relation to the applicator by using auto-radiography and imaging. Sectional imaging can be utilised in the process, with CT imaging being the optimal modality. The results from the commissioning process can be stored as library applicators. The importance of proper commissioning is underlined by the fact that errors in library files result in systematic errors for clinical treatment plans. While the source channel is well visualised in CT images, applicator reconstruction is more challenging when using MR images. Availability of commercial dummy sources for MRI is limited, and image artifacts may occur with titanium applicators. The choice of MR sequence is essential for optimal visualisation of the applicator. Para-transverse imaging (oriented according to the applicator) with small slice thickness (< or =5 mm) is recommended or alternatively 3D MR sequences with isotropic voxel sizes. Preferably, contouring and reconstruction should be performed in the same image series in order to avoid fusion uncertainties. Clear and correct strategies for the applicator reconstruction will ensure that reconstruction uncertainties have limited impact on the delivered dose. Under well-controlled circumstances the reconstruction uncertainties are in general smaller than other brachytherapy uncertainties such as contouring and organ movement.
图像引导宫颈癌近距离放疗正逐渐取代基于 X 射线的剂量规划。在图像引导近距离放疗中,施源器的几何形状从患者的 3D 图像中提取出来,并引入到治疗计划系统中;这个过程被称为施源器重建。由于近距离放疗的剂量梯度非常陡峭,重建误差可能导致靶区和危及器官的剂量偏差。为了最小化不确定性并避免意外错误,必须实施适当的施源器调试和重建方法。施源器调试通过使用自动射线照相和成像来验证源位置与施源器的相对位置。可以在这个过程中使用截面成像,其中 CT 成像是最佳模态。调试过程的结果可以存储为库施源器。正确调试的重要性在于,库文件中的错误会导致临床治疗计划的系统性错误。虽然在 CT 图像中可以很好地显示源通道,但在使用 MR 图像时,施源器重建更具挑战性。商用虚拟源可用于 MRI 的可用性有限,并且钛施源器可能会出现图像伪影。选择最佳的 MR 序列对于施源器的最佳可视化至关重要。建议使用平行于施源器的矢状面成像(para-transverse imaging),并采用较小的切片厚度(<或=5 毫米),或者使用具有各向同性体素大小的 3D MR 序列。优选地,在相同的图像系列中进行轮廓和重建,以避免融合不确定性。清晰和正确的施源器重建策略将确保重建不确定性对所交付剂量的影响有限。在受控良好的情况下,重建不确定性通常比其他近距离放疗不确定性(如轮廓和器官运动)小。