Suppr超能文献

ARV1 表达降低导致内质网胆固醇蓄积和胆汁酸代谢异常。

Decreased expression of ARV1 results in cholesterol retention in the endoplasmic reticulum and abnormal bile acid metabolism.

机构信息

Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Biol Chem. 2010 Oct 29;285(44):33632-41. doi: 10.1074/jbc.M110.165761. Epub 2010 Jul 27.

Abstract

Endoplasmic reticulum (ER) membrane cholesterol is maintained at an optimal concentration of ∼5 mol % by the net impact of sterol synthesis, modification, and export. Arv1p was first identified in the yeast Saccharomyces cerevisiae as a key component of this homeostasis due to its probable role in intracellular sterol transport. Mammalian ARV1, which can fully complement the yeast lesion, encodes a ubiquitously expressed, resident ER protein. Repeated dosing of specific antisense oligonucleotides to ARV1 produced a marked reduction of ARV1 transcripts in liver, adipose, and to a lesser extent, intestine. This resulted in marked hypercholesterolemia, elevated serum bile acids, and activation of the hepatic farnesoid X receptor (FXR) regulatory pathway. Knockdown of ARV1 in murine liver and HepG2 cells was associated with accumulation of cholesterol in the ER at the expense of the plasma membrane and suppression of sterol regulatory element-binding proteins and their targets. These studies indicate a critical role of mammalian Arv1p in sterol movement from the ER and in the ensuing regulation of hepatic cholesterol and bile acid metabolism.

摘要

内质网(ER)膜胆固醇通过固醇合成、修饰和输出的净影响保持在最佳浓度约 5mol%。Arv1p 最初在酵母酿酒酵母中被鉴定为这种动态平衡的关键组成部分,因为它可能在细胞内固醇运输中起作用。哺乳动物 ARV1 可以完全弥补酵母缺陷,它编码一种广泛表达的、驻留的内质网蛋白。对 ARV1 进行特定反义寡核苷酸的重复给药会导致肝脏、脂肪组织(在较小程度上还有肠道)中 ARV1 转录物的明显减少。这导致明显的高胆固醇血症、血清胆汁酸升高和肝脏法尼醇 X 受体 (FXR) 调节途径的激活。ARV1 在小鼠肝脏和 HepG2 细胞中的敲低与内质网中胆固醇的积累有关,这是以牺牲质膜为代价的,并抑制固醇调节元件结合蛋白及其靶标。这些研究表明,哺乳动物 Arv1p 在固醇从内质网的运动以及随后对肝脏胆固醇和胆汁酸代谢的调节中起着关键作用。

相似文献

1
Decreased expression of ARV1 results in cholesterol retention in the endoplasmic reticulum and abnormal bile acid metabolism.
J Biol Chem. 2010 Oct 29;285(44):33632-41. doi: 10.1074/jbc.M110.165761. Epub 2010 Jul 27.
3
Determination of the membrane topology of Arv1 and the requirement of the ER luminal region for Arv1 function in Saccharomyces cerevisiae.
FEMS Yeast Res. 2011 Sep;11(6):524-7. doi: 10.1111/j.1567-1364.2011.00737.x. Epub 2011 May 31.
6
Oxysterol-binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast.
J Biol Chem. 2018 Apr 13;293(15):5636-5648. doi: 10.1074/jbc.RA117.000596. Epub 2018 Feb 27.
7
Yeast cells lacking the ARV1 gene harbor defects in sphingolipid metabolism. Complementation by human ARV1.
J Biol Chem. 2002 Sep 27;277(39):36152-60. doi: 10.1074/jbc.M206624200. Epub 2002 Jul 26.
8
Cold-sensitive phenotypes of a yeast null mutant of ARV1 support its role as a GPI flippase.
FEBS Lett. 2020 Aug;594(15):2431-2439. doi: 10.1002/1873-3468.13843. Epub 2020 Jun 11.
9
Complementation analysis reveals a potential role of human ARV1 in GPI anchor biosynthesis.
Yeast. 2016 Feb;33(2):37-42. doi: 10.1002/yea.3138. Epub 2015 Nov 2.

引用本文的文献

1
ARV1 is a component of the enzyme initiating glycosylphosphatidylinositol biosynthesis.
J Biol Chem. 2025 May 14;301(6):110236. doi: 10.1016/j.jbc.2025.110236.
2
The sterol-regulating human ARV1 binds cholesterol and phospholipids through its conserved ARV1 homology domain.
J Biol Chem. 2025 Mar;301(3):108306. doi: 10.1016/j.jbc.2025.108306. Epub 2025 Feb 12.
3
Arv1; a "Mover and Shaker" of Subcellular Lipids.
Contact (Thousand Oaks). 2025 Jan 17;8:25152564251314601. doi: 10.1177/25152564251314601. eCollection 2025 Jan-Dec.
5
Mice lacking have reduced signs of metabolic syndrome and non-alcoholic fatty liver disease.
J Biol Chem. 2018 Apr 20;293(16):5956-5974. doi: 10.1074/jbc.RA117.000800. Epub 2018 Feb 28.
6
Recent Advances in Ergosterol Biosynthesis and Regulation Mechanisms in .
Indian J Microbiol. 2017 Sep;57(3):270-277. doi: 10.1007/s12088-017-0657-1. Epub 2017 Jul 4.
7
Arv1 promotes cell division by recruiting IQGAP1 and myosin to the cleavage furrow.
Cell Cycle. 2016;15(5):628-43. doi: 10.1080/15384101.2016.1146834.
8
Deletion of murine Arv1 results in a lean phenotype with increased energy expenditure.
Nutr Diabetes. 2015 Oct 19;5(10):e181. doi: 10.1038/nutd.2015.32.
9
High-resolution profiling of stationary-phase survival reveals yeast longevity factors and their genetic interactions.
PLoS Genet. 2014 Feb 27;10(2):e1004168. doi: 10.1371/journal.pgen.1004168. eCollection 2014 Feb.

本文引用的文献

1
Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content.
J Biol Chem. 2009 Apr 10;284(15):9947-54. doi: 10.1074/jbc.M808667200. Epub 2009 Feb 19.
4
Non-vesicular sterol transport in cells.
Prog Lipid Res. 2007 Nov;46(6):297-314. doi: 10.1016/j.plipres.2007.06.002. Epub 2007 Jul 18.
5
Ezetimibe interferes with cholesterol trafficking from the plasma membrane to the endoplasmic reticulum in CaCo-2 cells.
J Lipid Res. 2007 Aug;48(8):1735-45. doi: 10.1194/jlr.M700029-JLR200. Epub 2007 May 1.
6
Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins.
Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6519-26. doi: 10.1073/pnas.0700907104. Epub 2007 Apr 11.
7
Role of plasma and liver cholesterol- and lipoprotein-metabolism determinants in LpX formation in the mouse.
Biochim Biophys Acta. 2007 Jun;1770(6):979-88. doi: 10.1016/j.bbagen.2007.02.010. Epub 2007 Mar 1.
8
Protein sensors for membrane sterols.
Cell. 2006 Jan 13;124(1):35-46. doi: 10.1016/j.cell.2005.12.022.
9
Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339.
J Lipid Res. 2005 Sep;46(9):2023-8. doi: 10.1194/jlr.D500019-JLR200. Epub 2005 Jul 1.
10
Raising HDL cholesterol without inducing hepatic steatosis and hypertriglyceridemia by a selective LXR modulator.
J Lipid Res. 2004 Aug;45(8):1410-7. doi: 10.1194/jlr.M300450-JLR200. Epub 2004 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验