Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan.
Mol Syst Biol. 2010 Jul;6:394. doi: 10.1038/msb.2010.51.
Although there has been significant progress in understanding the molecular signals that change cell morphology, mechanisms that cells use to monitor their size and length to regulate their morphology remain elusive. Previous studies suggest that polarizing cultured hippocampal neurons can sense neurite length, identify the longest neurite, and induce its subsequent outgrowth for axonogenesis. We observed that shootin1, a key regulator of axon outgrowth and neuronal polarization, accumulates in neurite tips in a neurite length-dependent manner; here, the property of cell length is translated into shootin1 signals. Quantitative live cell imaging combined with modeling analyses revealed that intraneuritic anterograde transport and retrograde diffusion of shootin1 account for its neurite length-dependent accumulation. Our quantitative model further explains that the length-dependent shootin1 accumulation, together with shootin1-dependent neurite outgrowth, constitutes a positive feedback loop that amplifies stochastic fluctuations of shootin1 signals, thereby generating an asymmetric signal for axon specification and neuronal symmetry breaking.
尽管在理解改变细胞形态的分子信号方面已经取得了重大进展,但细胞用于监测其大小和长度以调节其形态的机制仍然难以捉摸。先前的研究表明,培养的海马神经元的极化可以感知神经突的长度,识别最长的神经突,并诱导其随后的生长以进行轴突发生。我们观察到,轴突生长和神经元极化的关键调节因子 shootin1 以依赖于神经突长度的方式在神经突尖端积累;在这里,细胞长度的特性被转化为 shootin1 信号。定量活细胞成像结合建模分析表明, shootin1 的神经突内顺行运输和逆行扩散负责其依赖于神经突长度的积累。我们的定量模型进一步解释说,依赖于长度的 shootin1 积累,以及依赖于 shootin1 的神经突生长,构成了一个正反馈回路,放大了 shootin1 信号的随机波动,从而为轴突特化和神经元对称破缺产生不对称信号。