Suppr超能文献

G蛋白偶联受体(GPCRs)作为具有高潜力的药物靶点的膜蛋白家族,其结构测定方面的最新进展。

Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets.

作者信息

Cherezov Vadim, Abola Enrique, Stevens Raymond C

机构信息

Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.

出版信息

Methods Mol Biol. 2010;654:141-68. doi: 10.1007/978-1-60761-762-4_8.

Abstract

G protein-coupled receptors (GPCRs) constitute a highly diverse and ubiquitous family of integral membrane proteins, transmitting signals inside the cells in response to an assortment of disparate extracellular stimuli. Their strategic location on the cell surface and their involvement in crucial cellular and physiological processes turn these receptors into highly important pharmaceutical targets. Recent technological developments aimed at stabilization and crystallization of these receptors have led to significant breakthroughs in GPCR structure determination efforts. One of the successful approaches involved receptor stabilization with the help of a fusion partner combined with crystallization in lipidic cubic phase (LCP). The success of using an LCP matrix for crystallization is generally attributed to the creation of a more native, membrane-like stabilizing environment for GPCRs just prior to nucleation and to the formation of type I crystal lattices, thus generating highly ordered and strongly diffracting crystals. Here we describe protocols for reconstituting purified GPCRs in LCP, performing pre-crystallization assays, setting up crystallization trials in manual mode, detecting crystallization hits, optimizing crystallization conditions, harvesting, and collecting crystallographic data The protocols provide a sensible framework for approaching crystallization of stabilized GPCRs in LCP, however, as in any crystallization experiment, extensive screening and optimization of crystallization conditions as well as optimization of protein construct and purification steps are required. The process remains risky and these protocols do not necessarily guarantee success.

摘要

G蛋白偶联受体(GPCRs)是一类高度多样且普遍存在的整合膜蛋白家族,可响应各种不同的细胞外刺激在细胞内传递信号。它们在细胞表面的关键位置以及参与重要的细胞和生理过程,使这些受体成为极为重要的药物靶点。最近旨在使这些受体稳定化和结晶的技术发展,在GPCR结构测定工作中取得了重大突破。其中一种成功的方法是借助融合伴侣使受体稳定化,并结合在脂立方相(LCP)中进行结晶。使用LCP基质进行结晶成功的原因通常是在成核之前为GPCRs创造了一个更天然、类似膜的稳定环境,并形成了I型晶格,从而产生高度有序且衍射能力强的晶体。在这里,我们描述了在LCP中重组纯化的GPCRs、进行预结晶分析、以手动模式进行结晶试验、检测结晶命中情况、优化结晶条件、收获晶体以及收集晶体学数据的方案。这些方案为在LCP中进行稳定化GPCRs的结晶提供了一个合理的框架,然而,如同任何结晶实验一样,需要对结晶条件进行广泛的筛选和优化,以及对蛋白质构建体和纯化步骤进行优化。这个过程仍然存在风险,并且这些方案不一定能保证成功。

相似文献

2
3
Universal platform for the generation of thermostabilized GPCRs that crystallize in LCP.
Nat Protoc. 2022 Mar;17(3):698-726. doi: 10.1038/s41596-021-00660-9. Epub 2022 Feb 9.
5
A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase.
Acta Crystallogr F Struct Biol Commun. 2016 Apr;72(Pt 4):307-12. doi: 10.1107/S2053230X16004118. Epub 2016 Mar 24.
7
Crystallization of membrane proteins in lipidic mesophases.
J Vis Exp. 2011 Mar 28(49):2501. doi: 10.3791/2501.
8
GPCR crystallization using lipidic cubic phase technique.
Curr Pharm Biotechnol. 2014;15(10):971-9. doi: 10.2174/1389201015666140922110325.
9
Why GPCRs behave differently in cubic and lamellar lipidic mesophases.
J Am Chem Soc. 2012 Sep 26;134(38):15858-68. doi: 10.1021/ja3056485. Epub 2012 Sep 12.
10
Serial Femtosecond Crystallography of Membrane Proteins.
Adv Exp Med Biol. 2016;922:151-160. doi: 10.1007/978-3-319-35072-1_11.

引用本文的文献

1
7.10 MAG. A Novel Host Monoacylglyceride for (Lipid Cubic Phase) Crystallization of Membrane Proteins.
Cryst Growth Des. 2024 Mar 25;24(7):2985-3001. doi: 10.1021/acs.cgd.4c00087. eCollection 2024 Apr 3.
2
Protein Design: From the Aspect of Water Solubility and Stability.
Chem Rev. 2022 Sep 28;122(18):14085-14179. doi: 10.1021/acs.chemrev.1c00757. Epub 2022 Aug 3.
3
Studying membrane proteins with MicroED.
Biochem Soc Trans. 2022 Feb 28;50(1):231-239. doi: 10.1042/BST20210911.
4
Refolding and characterization of two G protein-coupled receptors purified from E. coli inclusion bodies.
PLoS One. 2021 Feb 24;16(2):e0247689. doi: 10.1371/journal.pone.0247689. eCollection 2021.
6
Serial Femtosecond Crystallography of G Protein-Coupled Receptors.
Annu Rev Biophys. 2018 May 20;47:377-397. doi: 10.1146/annurev-biophys-070317-033239. Epub 2018 Mar 15.
9
X-ray Transparent Microfluidic Chip for Mesophase-Based Crystallization of Membrane Proteins and On-Chip Structure Determination.
Cryst Growth Des. 2014 Oct 1;14(10):4886-4890. doi: 10.1021/cg5011488. Epub 2014 Aug 21.
10
Femtosecond crystallography of membrane proteins in the lipidic cubic phase.
Philos Trans R Soc Lond B Biol Sci. 2014 Jul 17;369(1647):20130314. doi: 10.1098/rstb.2013.0314.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Crystallizing membrane proteins using lipidic mesophases.
Nat Protoc. 2009;4(5):706-31. doi: 10.1038/nprot.2009.31.
3
LCP-FRAP Assay for Pre-Screening Membrane Proteins for in Meso Crystallization.
Cryst Growth Des. 2008;8(12):4307-4315. doi: 10.1021/cg800778j.
5
Crystallizing membrane proteins for structure determination: use of lipidic mesophases.
Annu Rev Biophys. 2009;38:29-51. doi: 10.1146/annurev.biophys.050708.133655.
7
The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist.
Science. 2008 Nov 21;322(5905):1211-7. doi: 10.1126/science.1164772. Epub 2008 Oct 2.
8
Crystal structure of opsin in its G-protein-interacting conformation.
Nature. 2008 Sep 25;455(7212):497-502. doi: 10.1038/nature07330.
10
Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor.
Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10744-9. doi: 10.1073/pnas.0804396105. Epub 2008 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验