Suppr超能文献

人类听觉皮层的放电率和场电位动力学对刺激调制率的不变性。

Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex.

机构信息

Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles (UCLA), 660 Charles E. Young Drive South, Los Angeles, CA 90095, USA.

出版信息

Hum Brain Mapp. 2011 Aug;32(8):1181-93. doi: 10.1002/hbm.21100. Epub 2010 Jul 27.

Abstract

The effect of stimulus modulation rate on the underlying neural activity in human auditory cortex is not clear. Human studies (using both invasive and noninvasive techniques) have demonstrated that at the population level, auditory cortex follows stimulus envelope. Here we examined the effect of stimulus modulation rate by using a rare opportunity to record both spiking activity and local field potentials (LFP) in auditory cortex of patients during repeated presentations of an audio-visual movie clip presented at normal, double, and quadruple speeds. Mean firing rate during evoked activity remained the same across speeds and the temporal response profile of firing rate modulations at increased stimulus speeds was a linearly scaled version of the response during slower speeds. Additionally, stimulus induced power modulation of local field potentials in the high gamma band (64-128 Hz) exhibited similar temporal scaling as the neuronal firing rate modulations. Our data confirm and extend previous studies in humans and anesthetized animals, supporting a model in which both firing rate, and high-gamma LFP power modulations in auditory cortex follow the temporal envelope of the stimulus across different modulation rates.

摘要

刺激调制率对人类听觉皮层中潜在神经活动的影响尚不清楚。人类研究(使用侵入性和非侵入性技术)已经表明,在群体水平上,听觉皮层跟随刺激包络。在这里,我们通过使用一个难得的机会来记录听觉皮层中的尖峰活动和局部场电位(LFP),在正常、双倍和四倍速度下重复呈现视听电影片段,来检查刺激调制率的影响。在不同速度下,诱发活动期间的平均放电率保持不变,并且在较高刺激速度下的放电率调制的时间响应特征是较慢速度下响应的线性缩放版本。此外,局部场电位在高频带(64-128 Hz)中的刺激诱导功率调制表现出与神经元放电率调制相似的时间缩放。我们的数据证实并扩展了以前在人类和麻醉动物中的研究,支持这样一种模型,即听觉皮层中的放电率和高频 LFP 功率调制都跟随不同调制率下刺激的时间包络。

相似文献

1
Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex.
Hum Brain Mapp. 2011 Aug;32(8):1181-93. doi: 10.1002/hbm.21100. Epub 2010 Jul 27.
3
Neural representations of complex temporal modulations in the human auditory cortex.
J Neurophysiol. 2009 Nov;102(5):2731-43. doi: 10.1152/jn.00523.2009. Epub 2009 Aug 19.
4
Stimulus-dependent oscillations and evoked potentials in chinchilla auditory cortex.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Aug;194(8):693-700. doi: 10.1007/s00359-008-0340-4. Epub 2008 May 9.
5
Online stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons.
J Neurosci. 2014 Jul 2;34(27):8963-75. doi: 10.1523/JNEUROSCI.0260-14.2014.
6
Gain Control in the Auditory Cortex Evoked by Changing Temporal Correlation of Sounds.
Cereb Cortex. 2017 Mar 1;27(3):2385-2402. doi: 10.1093/cercor/bhw083.
7
State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex.
J Neurosci. 2011 Apr 27;31(17):6414-20. doi: 10.1523/JNEUROSCI.5773-10.2011.
8
Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14611-6. doi: 10.1073/pnas.0907682106. Epub 2009 Aug 10.
10
Coding of repetitive transients by auditory cortex on Heschl's gyrus.
J Neurophysiol. 2009 Oct;102(4):2358-74. doi: 10.1152/jn.91346.2008. Epub 2009 Aug 12.

引用本文的文献

1
Focal Infrared Neural Stimulation Propagates Dynamical Transformations in Auditory Cortex.
bioRxiv. 2025 Mar 16:2025.03.12.642906. doi: 10.1101/2025.03.12.642906.
3
Neural tracking of speech mental imagery during rhythmic inner counting.
Elife. 2019 Oct 22;8:e48971. doi: 10.7554/eLife.48971.
4
Scale-Free Amplitude Modulation of Neuronal Oscillations Tracks Comprehension of Accelerated Speech.
J Neurosci. 2018 Jan 17;38(3):710-722. doi: 10.1523/JNEUROSCI.1515-17.2017. Epub 2017 Dec 7.
5
Sparse Spectro-Temporal Receptive Fields Based on Multi-Unit and High-Gamma Responses in Human Auditory Cortex.
PLoS One. 2015 Sep 14;10(9):e0137915. doi: 10.1371/journal.pone.0137915. eCollection 2015.
6
Modulation of response patterns in human auditory cortex during a target detection task: an intracranial electrophysiology study.
Int J Psychophysiol. 2015 Feb;95(2):191-201. doi: 10.1016/j.ijpsycho.2014.03.006. Epub 2014 Mar 25.
7
Temporal scaling of neural responses to compressed and dilated natural speech.
J Neurophysiol. 2014 Jun 15;111(12):2433-44. doi: 10.1152/jn.00497.2013. Epub 2014 Mar 19.
8
Emergence of sensory patterns during sleep highlights differential dynamics of REM and non-REM sleep stages.
J Neurosci. 2013 Sep 11;33(37):14715-28. doi: 10.1523/JNEUROSCI.0232-13.2013.
9
The tracking of speech envelope in the human cortex.
PLoS One. 2013;8(1):e53398. doi: 10.1371/journal.pone.0053398. Epub 2013 Jan 10.
10
Encoding of ultrasonic vocalizations in the auditory cortex.
J Neurophysiol. 2013 Apr;109(7):1912-27. doi: 10.1152/jn.00483.2012. Epub 2013 Jan 16.

本文引用的文献

1
A new correlation-based measure of spike timing reliability.
Neurocomputing (Amst). 2003 Jun 1;52-54:925-931. doi: 10.1016/S0925-2312(02)00838-X.
2
Temporal envelope of time-compressed speech represented in the human auditory cortex.
J Neurosci. 2009 Dec 9;29(49):15564-74. doi: 10.1523/JNEUROSCI.3065-09.2009.
3
Coding of repetitive transients by auditory cortex on Heschl's gyrus.
J Neurophysiol. 2009 Oct;102(4):2358-74. doi: 10.1152/jn.91346.2008. Epub 2009 Aug 12.
4
Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns.
Neuron. 2009 Feb 26;61(4):597-608. doi: 10.1016/j.neuron.2009.01.008.
5
"Who" is saying "what"? Brain-based decoding of human voice and speech.
Science. 2008 Nov 7;322(5903):970-3. doi: 10.1126/science.1164318.
6
Human single-neuron responses at the threshold of conscious recognition.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3599-604. doi: 10.1073/pnas.0707043105. Epub 2008 Feb 25.
7
Functional localization of auditory cortical fields of human: click-train stimulation.
Hear Res. 2008 Apr;238(1-2):12-24. doi: 10.1016/j.heares.2007.11.012. Epub 2007 Dec 8.
8
Ultra-fine frequency tuning revealed in single neurons of human auditory cortex.
Nature. 2008 Jan 10;451(7175):197-201. doi: 10.1038/nature06476.
9
Visual modulation of neurons in auditory cortex.
Cereb Cortex. 2008 Jul;18(7):1560-74. doi: 10.1093/cercor/bhm187. Epub 2008 Jan 6.
10
Inferring spike trains from local field potentials.
J Neurophysiol. 2008 Mar;99(3):1461-76. doi: 10.1152/jn.00919.2007. Epub 2007 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验