Suppr超能文献

在线刺激优化快速揭示听觉皮层神经元的多维选择性。

Online stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons.

机构信息

Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115,

Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115, and.

出版信息

J Neurosci. 2014 Jul 2;34(27):8963-75. doi: 10.1523/JNEUROSCI.0260-14.2014.

Abstract

Neurons in sensory brain regions shape our perception of the surrounding environment through two parallel operations: decomposition and integration. For example, auditory neurons decompose sounds by separately encoding their frequency, temporal modulation, intensity, and spatial location. Neurons also integrate across these various features to support a unified perceptual gestalt of an auditory object. At higher levels of a sensory pathway, neurons may select for a restricted region of feature space defined by the intersection of multiple, independent stimulus dimensions. To further characterize how auditory cortical neurons decompose and integrate multiple facets of an isolated sound, we developed an automated procedure that manipulated five fundamental acoustic properties in real time based on single-unit feedback in awake mice. Within several minutes, the online approach converged on regions of the multidimensional stimulus manifold that reliably drove neurons at significantly higher rates than predefined stimuli. Optimized stimuli were cross-validated against pure tone receptive fields and spectrotemporal receptive field estimates in the inferior colliculus and primary auditory cortex. We observed, from midbrain to cortex, increases in both level invariance and frequency selectivity, which may underlie equivalent sparseness of responses in the two areas. We found that onset and steady-state spike rates increased proportionately as the stimulus was tailored to the multidimensional receptive field. By separately evaluating the amount of leverage each sound feature exerted on the overall firing rate, these findings reveal interdependencies between stimulus features as well as hierarchical shifts in selectivity and invariance that may go unnoticed with traditional approaches.

摘要

感觉脑区的神经元通过两种平行的操作来塑造我们对周围环境的感知

分解和整合。例如,听觉神经元通过分别对声音的频率、时变调制、强度和空间位置进行编码来分解声音。神经元还通过这些不同的特征进行整合,以支持听觉对象的统一感知整体。在感觉通路的更高层次上,神经元可能会选择由多个独立刺激维度的交集定义的特征空间的受限区域。为了进一步描述听觉皮层神经元如何分解和整合孤立声音的多个方面,我们开发了一种自动化程序,可以根据清醒小鼠的单个单元反馈实时操纵五个基本声学特性。在几分钟内,在线方法收敛到多维刺激流形的区域,这些区域以比预定义刺激显著更高的速率可靠地驱动神经元。优化的刺激与中脑和初级听觉皮层中的纯音感受野和频谱时间感受野估计进行了交叉验证。我们从中脑到皮层观察到,水平不变性和频率选择性都增加了,这可能是两个区域的反应稀疏性相同的基础。我们发现,随着刺激适应多维感受野,起始和稳态尖峰率成比例地增加。通过分别评估每个声音特征对整体放电率的影响程度,这些发现揭示了刺激特征之间的相互依赖性以及选择性和不变性的层次转移,这些转移可能会被传统方法所忽视。

相似文献

1
Online stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons.
J Neurosci. 2014 Jul 2;34(27):8963-75. doi: 10.1523/JNEUROSCI.0260-14.2014.
2
Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.
eNeuro. 2016 Sep 1;3(4). doi: 10.1523/ENEURO.0124-16.2016. eCollection 2016 Jul-Aug.
3
Multidimensional receptive field processing by cat primary auditory cortical neurons.
Neuroscience. 2017 Sep 17;359:130-141. doi: 10.1016/j.neuroscience.2017.07.003. Epub 2017 Jul 8.
4
An Emergent Population Code in Primary Auditory Cortex Supports Selective Attention to Spectral and Temporal Sound Features.
J Neurosci. 2021 Sep 8;41(36):7561-7577. doi: 10.1523/JNEUROSCI.0693-20.2021. Epub 2021 Jul 1.
5
Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.
PLoS Comput Biol. 2016 Nov 11;12(11):e1005113. doi: 10.1371/journal.pcbi.1005113. eCollection 2016 Nov.
7
Receptive field dimensionality increases from the auditory midbrain to cortex.
J Neurophysiol. 2012 May;107(10):2594-603. doi: 10.1152/jn.01025.2011. Epub 2012 Feb 8.
8
Sensory input directs spatial and temporal plasticity in primary auditory cortex.
J Neurophysiol. 2001 Jul;86(1):326-38. doi: 10.1152/jn.2001.86.1.326.
9
A new and fast characterization of multiple encoding properties of auditory neurons.
Brain Topogr. 2015 May;28(3):379-400. doi: 10.1007/s10548-014-0375-5. Epub 2014 May 29.
10
Subset of thin spike cortical neurons preserve the peripheral encoding of stimulus onsets.
J Neurophysiol. 2010 Dec;104(6):3588-99. doi: 10.1152/jn.00295.2010. Epub 2010 Oct 13.

引用本文的文献

2
Bidirectional generative adversarial representation learning for natural stimulus synthesis.
J Neurophysiol. 2024 Oct 1;132(4):1156-1169. doi: 10.1152/jn.00421.2023. Epub 2024 Aug 28.
3
Functional Connectivity of the Auditory Cortex in Women With Trauma-Related Disorders Who Hear Voices.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Oct;9(10):1066-1074. doi: 10.1016/j.bpsc.2024.06.009. Epub 2024 Jun 27.
4
Reversible Inactivation of Ferret Auditory Cortex Impairs Spatial and Nonspatial Hearing.
J Neurosci. 2023 Feb 1;43(5):749-763. doi: 10.1523/JNEUROSCI.1426-22.2022. Epub 2023 Jan 5.
5
A stable sensory map emerges from a dynamic equilibrium of neurons with unstable tuning properties.
Cereb Cortex. 2023 Apr 25;33(9):5597-5612. doi: 10.1093/cercor/bhac445.
6
Choice-related activity and neural encoding in primary auditory cortex and lateral belt during feature-selective attention.
J Neurophysiol. 2021 May 1;125(5):1920-1937. doi: 10.1152/jn.00406.2020. Epub 2021 Mar 31.
7
Individual Variability in Functional Organization of the Human and Monkey Auditory Cortex.
Cereb Cortex. 2021 Mar 31;31(5):2450-2465. doi: 10.1093/cercor/bhaa366.
10
Adaptive Stimulus Design for Dynamic Recurrent Neural Network Models.
Front Neural Circuits. 2019 Jan 22;12:119. doi: 10.3389/fncir.2018.00119. eCollection 2018.

本文引用的文献

1
Integration over multiple timescales in primary auditory cortex.
J Neurosci. 2013 Dec 4;33(49):19154-66. doi: 10.1523/JNEUROSCI.2270-13.2013.
2
Adaptive stimulus optimization for sensory systems neuroscience.
Front Neural Circuits. 2013 Jun 6;7:101. doi: 10.3389/fncir.2013.00101. eCollection 2013.
3
Encoding of ultrasonic vocalizations in the auditory cortex.
J Neurophysiol. 2013 Apr;109(7):1912-27. doi: 10.1152/jn.00483.2012. Epub 2013 Jan 16.
4
Sensitivity to complex statistical regularities in rat auditory cortex.
Neuron. 2012 Nov 8;76(3):603-15. doi: 10.1016/j.neuron.2012.08.025.
5
Balanced increases in selectivity and tolerance produce constant sparseness along the ventral visual stream.
J Neurosci. 2012 Jul 25;32(30):10170-82. doi: 10.1523/JNEUROSCI.6125-11.2012.
6
7
Medial axis shape coding in macaque inferotemporal cortex.
Neuron. 2012 Jun 21;74(6):1099-113. doi: 10.1016/j.neuron.2012.04.029.
8
Searching for optimal stimuli: ascending a neuron's response function.
J Comput Neurosci. 2012 Dec;33(3):449-73. doi: 10.1007/s10827-012-0395-7. Epub 2012 May 13.
9
Inferring the role of inhibition in auditory processing of complex natural stimuli.
J Neurophysiol. 2012 Jun;107(12):3296-307. doi: 10.1152/jn.01173.2011. Epub 2012 Mar 28.
10
Receptive field dimensionality increases from the auditory midbrain to cortex.
J Neurophysiol. 2012 May;107(10):2594-603. doi: 10.1152/jn.01025.2011. Epub 2012 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验