Pacific Northwest National Laboratory, Richland, Washington, USA.
Environ Sci Technol. 2010 Aug 1;44(15):5855-61. doi: 10.1021/es100069x.
Quantum-mechanical methods were used to evaluate mechanisms for possible structural incorporation of Tc species into the model iron oxide, hematite (alpha-Fe2O3). Using periodic supercell models, energies for charge-neutral incorporation of Tc4+ or TcO4- ions were calculated using either a Tc4+/Fe2+ substitution scheme on the metal sublattice, or by insertion of TcO4- as an interstitial species within a hypothetical vacancy cluster. Although pertechnetate incorporation is found to be invariably unfavorable, incorporation of small amounts of Tc4+ (at least 2.6 wt %) is energetically feasible. Energy minimized bond distances around this impurity are provided to aid in future spectroscopic identification of these impurity species. The calculations also show that Fe2+ and Tc4+ prefer to cluster in the hematite lattice, attributed to less net Coulombic repulsion relative to that of Fe3+-Fe3+. These modeling predictions are generally consistent with observed selective association of Tc with iron oxide under reducing conditions, and in residual waste solids from underground storage tanks at the U.S. Department of Energy Hanford Site (Washington, U.S.). Here, even though relatively high pH and oxidizing conditions are dominant, Tc incorporation into iron oxides and (oxy)hydroxides is prospectively enabled by prior reduction of TcO4- to Tc4+ via interaction with radiolytic species.
采用量子力学方法评估了将 Tc 物种结构整合到模型氧化铁(赤铁矿,α-Fe2O3)中的可能机制。使用周期性超晶胞模型,通过在金属亚晶格上进行 Tc4+/Fe2+取代方案,或通过将 TcO4-插入假想空位簇中的间隙物种,计算了 Tc4+或 TcO4-离子中性电荷掺入的能量。尽管发现高锝酸盐掺入始终是不利的,但掺入少量 Tc4+(至少 2.6wt%)在能量上是可行的。提供了这些杂质周围能量最小化的键距离,以帮助未来对这些杂质物种的光谱识别。这些计算还表明,Fe2+和 Tc4+倾向于在赤铁矿晶格中聚集,这归因于与 Fe3+-Fe3+相比,库仑排斥力更小。这些模型预测与在还原性条件下观察到的 Tc 与氧化铁的选择性结合以及美国能源部汉福德现场(华盛顿州)地下储存罐中残留废物固体一致。在这里,尽管相对较高的 pH 值和氧化条件占主导地位,但通过与辐射分解产物相互作用将 TcO4-还原为 Tc4+,有望将 Tc 掺入铁氧化物和(氧)氢氧化物中。