Suppr超能文献

跳出常规思维,第一部分:建立出生体重分布模型。

Thinking outside the curve, part I: modeling birthweight distribution.

机构信息

Department of Statistics and Biostatistics University of Kentucky Lexington, KY 40506-0027, USA.

出版信息

BMC Pregnancy Childbirth. 2010 Jul 28;10:37. doi: 10.1186/1471-2393-10-37.

Abstract

BACKGROUND

Greater epidemiologic understanding of the relationships among fetal-infant mortality and its prognostic factors, including birthweight, could have vast public health implications. A key step toward that understanding is a realistic and tractable framework for analyzing birthweight distributions and fetal-infant mortality. The present paper is the first of a two-part series that introduces such a framework.

METHODS

We propose describing a birthweight distribution via a normal mixture model in which the number of components is determined from the data using a model selection criterion rather than fixed a priori.

RESULTS

We address a number of methodological issues, including how the number of components selected depends on the sample size, how the choice of model selection criterion influences the results, and how estimates of mixture model parameters based on multiple samples from the same population can be combined to produce confidence intervals. As an illustration, we find that a 4-component normal mixture model reasonably describes the birthweight distribution for a population of white singleton infants born to heavily smoking mothers. We also compare this 4-component normal mixture model to two competitors from the existing literature: a contaminated normal model and a 2-component normal mixture model. In a second illustration, we discover that a 6-component normal mixture model may be more appropriate than a 4-component normal mixture model for a general population of black singletons.

CONCLUSIONS

The framework developed in this paper avoids assuming the existence of an interval of birthweights over which there are no compromised pregnancies and does not constrain birthweights within compromised pregnancies to be normally distributed. Thus, the present framework can reveal heterogeneity in birthweight that is undetectable via a contaminated normal model or a 2-component normal mixture model.

摘要

背景

深入了解胎儿-婴儿死亡率及其预后因素(包括出生体重)之间的关系,对公共卫生具有重要意义。实现这一目标的关键步骤是为分析出生体重分布和胎儿-婴儿死亡率提供一个现实且可行的框架。本文是两部分系列的第一部分,介绍了这样一个框架。

方法

我们建议通过正态混合模型来描述出生体重分布,其中组件的数量是根据数据使用模型选择标准确定的,而不是固定的先验值。

结果

我们解决了一些方法学问题,包括选择的组件数量如何取决于样本量,模型选择标准的选择如何影响结果,以及如何基于来自同一人群的多个样本组合混合模型参数的估计值以产生置信区间。作为说明,我们发现,对于重度吸烟母亲所生的白人单胎婴儿的人群,4 分量正态混合模型可以合理地描述出生体重分布。我们还将这种 4 分量正态混合模型与来自现有文献的两个竞争对手进行了比较:污染正态模型和 2 分量正态混合模型。在第二个说明中,我们发现对于一般的黑人单胎人群,6 分量正态混合模型可能比 4 分量正态混合模型更合适。

结论

本文提出的框架避免了假设存在没有受损妊娠的出生体重区间,也没有将受损妊娠中的出生体重限制在正态分布范围内。因此,与污染正态模型或 2 分量正态混合模型相比,目前的框架可以揭示出生体重中的异质性,这些异质性是无法通过污染正态模型或 2 分量正态混合模型检测到的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验