Suppr超能文献

大豆(Glycine max L. Merr.)glycinine 和 β-conglycinin 基因家族的分子进化。

Molecular evolution of glycinin and β-conglycinin gene families in soybean (Glycine max L. Merr.).

机构信息

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, PR China.

出版信息

Heredity (Edinb). 2011 Apr;106(4):633-41. doi: 10.1038/hdy.2010.97. Epub 2010 Jul 28.

Abstract

There are two main classes of multi-subunit seed storage proteins, glycinin (11S) and β-conglycinin (7S), which account for approximately 70% of the total protein in a typical soybean seed. The subunits of these two protein classes are encoded by a number of genes. The genomic organization of these genes follows a complex evolutionary history. This research was designed to describe the origin and maintenance of genes in each of these gene families by analyzing the synteny, phylogenies, selection pressure and duplications of the genes in each gene family. The ancestral glycinin gene initially experienced a tandem duplication event; then, the genome underwent two subsequent rounds of whole-genome duplication, thereby resulting in duplication of the glycinin genes, and finally a tandem duplication likely gave rise to the Gy1 and Gy2 genes. The β-conglycinin genes primarily originated through the more recent whole-genome duplication and several tandem duplications. Purifying selection has had a key role in the maintenance of genes in both gene families. In addition, positive selection in the glycinin genes and a large deletion in a β-conglycinin exon contribute to the diversity of the duplicate genes. In summary, our results suggest that the duplicated genes in both gene families prefer to retain similar function throughout evolution and therefore may contribute to phenotypic robustness.

摘要

有两类主要的多亚基种子贮藏蛋白,即球蛋白(11S)和β-伴球蛋白(7S),它们约占典型大豆种子总蛋白的 70%。这两类蛋白质的亚基由许多基因编码。这些基因的基因组组织遵循复杂的进化历史。本研究旨在通过分析每个基因家族中基因的同线性、系统发育、选择压力和重复,描述这两个基因家族中每个基因的起源和维持。最初,球蛋白的祖先基因经历了串联重复事件;然后,基因组经历了两次全基因组复制,从而导致球蛋白基因的重复,最后,串联重复可能产生了 Gy1 和 Gy2 基因。β-伴球蛋白基因主要通过最近的全基因组复制和几个串联重复产生。在两个基因家族中,纯化选择在基因的维持中起着关键作用。此外,球蛋白基因中的正选择和 β-伴球蛋白外显子中的大片段缺失导致了重复基因的多样性。总之,我们的结果表明,两个基因家族中的重复基因在进化过程中更倾向于保留相似的功能,因此可能有助于表型的稳健性。

相似文献

1
Molecular evolution of glycinin and β-conglycinin gene families in soybean (Glycine max L. Merr.).
Heredity (Edinb). 2011 Apr;106(4):633-41. doi: 10.1038/hdy.2010.97. Epub 2010 Jul 28.
2
Linkage and association study discovered loci and candidate genes for glycinin and β-conglycinin in soybean (Glycine max L. Merr.).
Theor Appl Genet. 2021 Apr;134(4):1201-1215. doi: 10.1007/s00122-021-03766-6. Epub 2021 Jan 19.
3
Quantitative Trait Loci (QTL) Mapping for Glycinin and β-Conglycinin Contents in Soybean (Glycine max L. Merr.).
J Agric Food Chem. 2016 May 4;64(17):3473-83. doi: 10.1021/acs.jafc.6b00167. Epub 2016 Apr 25.
4
5
The β-conglycinin deficiency in wild soybean is associated with the tail-to-tail inverted repeat of the α-subunit genes.
Plant Mol Biol. 2012 Feb;78(3):301-9. doi: 10.1007/s11103-011-9865-y. Epub 2011 Dec 23.
7
Structural and functional analysis of various globulin proteins from soy seed.
Crit Rev Food Sci Nutr. 2015;55(11):1491-502. doi: 10.1080/10408398.2012.700340.
8
Genetic mapping of Cgdef gene controlling accumulation of 7S globulin (beta-conglycinin) subunits in soybean seeds.
J Hered. 2009 Nov-Dec;100(6):802-6. doi: 10.1093/jhered/esp046. Epub 2009 Jul 15.
10

引用本文的文献

1
Characterization of diet-linked amino acid pool influence on spp. growth and metabolism.
mSphere. 2025 Mar 25;10(3):e0078924. doi: 10.1128/msphere.00789-24. Epub 2025 Feb 13.
6
Genome-wide association mapping for protein, oil and water-soluble protein contents in soybean.
Mol Genet Genomics. 2021 Jan;296(1):91-102. doi: 10.1007/s00438-020-01704-7. Epub 2020 Oct 2.
9
10
Positive selection drives neofunctionalization of the UbiA prenyltransferase gene family.
Plant Mol Biol. 2015 Mar;87(4-5):383-94. doi: 10.1007/s11103-015-0285-2. Epub 2015 Jan 21.

本文引用的文献

1
Identification and characterization of DNA clones encoding group-II glycinin subunits.
Theor Appl Genet. 1985 Aug;70(5):510-9. doi: 10.1007/BF00305984.
3
Genetic mapping of the Gy4 and Gy5 glycinin genes in soybean and the analysis of a variant of Gy4.
Theor Appl Genet. 1994 Oct;89(2-3):297-304. doi: 10.1007/BF00225158.
4
Molecular evidence on plant divergence times.
Am J Bot. 2004 Oct;91(10):1656-65. doi: 10.3732/ajb.91.10.1656.
5
Genome sequence of the palaeopolyploid soybean.
Nature. 2010 Jan 14;463(7278):178-83. doi: 10.1038/nature08670.
6
Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5737-42. doi: 10.1073/pnas.0900906106. Epub 2009 Mar 26.
7
The life and death of gene families.
Bioessays. 2009 Jan;31(1):29-39. doi: 10.1002/bies.080085.
8
Jalview Version 2--a multiple sequence alignment editor and analysis workbench.
Bioinformatics. 2009 May 1;25(9):1189-91. doi: 10.1093/bioinformatics/btp033. Epub 2009 Jan 16.
9
CDD: specific functional annotation with the Conserved Domain Database.
Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10. doi: 10.1093/nar/gkn845. Epub 2008 Nov 4.
10
Synteny and collinearity in plant genomes.
Science. 2008 Apr 25;320(5875):486-8. doi: 10.1126/science.1153917.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验