Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Center, Rome, Italy.
Plant Physiol. 2010 Oct;154(2):899-912. doi: 10.1104/pp.110.159368. Epub 2010 Jul 29.
Vitamin A deficiency is a public health problem in a large number of countries. Biofortification of major staple crops (wheat [Triticum aestivum], rice [Oryza sativa], maize [Zea mays], and potato [Solanum tuberosum]) with β-carotene has the potential to alleviate this nutritional problem. Previously, we engineered transgenic "Golden" potato tubers overexpressing three bacterial genes for β-carotene synthesis (CrtB, CrtI, and CrtY, encoding phytoene synthase, phytoene desaturase, and lycopene β-cyclase, respectively) and accumulating the highest amount of β-carotene in the four aforementioned crops. Here, we report the systematic quantitation of carotenoid metabolites and transcripts in 24 lines carrying six different transgene combinations under the control of the 35S and Patatin (Pat) promoters. Low levels of B-I expression are sufficient for interfering with leaf carotenogenesis, but not for β-carotene accumulation in tubers and calli, which requires high expression levels of all three genes under the control of the Pat promoter. Tubers expressing the B-I transgenes show large perturbations in the transcription of endogenous carotenoid genes, with only minor changes in carotenoid content, while the opposite phenotype (low levels of transcriptional perturbation and high carotenoid levels) is observed in Golden (Y-B-I) tubers. We used hierarchical clustering and pairwise correlation analysis, together with a new method for network correlation analysis, developed for this purpose, to assess the perturbations in transcript and metabolite levels in transgenic leaves and tubers. Through a "guilt-by-profiling" approach, we identified several endogenous genes for carotenoid biosynthesis likely to play a key regulatory role in Golden tubers, which are candidates for manipulations aimed at the further optimization of tuber carotenoid content.
维生素 A 缺乏症是许多国家的一个公共卫生问题。通过生物强化方法,在主要的主食作物(小麦、水稻、玉米和马铃薯)中积累β-胡萝卜素,有可能缓解这一营养问题。此前,我们通过工程手段,在转基因“金”马铃薯块茎中过表达了三个编码β-胡萝卜素合成酶的细菌基因(CrtB、CrtI 和 CrtY,分别编码八氢番茄红素合酶、八氢番茄红素脱氢酶和番茄红素 β-环化酶),从而积累了上述四种作物中含量最高的β-胡萝卜素。在此,我们报告了在 24 条携带六种不同转基因组合的马铃薯品系中,对 35S 和 Patatin(Pat)启动子控制下的类胡萝卜素代谢物和转录物进行了系统定量。低水平的 B-I 表达足以干扰叶片类胡萝卜素生物合成,但不足以在块茎和愈伤组织中积累β-胡萝卜素,这需要在 Pat 启动子控制下高水平表达这三个基因。表达 B-I 转基因的块茎中,内源类胡萝卜素基因的转录受到了很大的干扰,而类胡萝卜素含量只有微小的变化,而在 Golden(Y-B-I)块茎中观察到的是相反的表型(转录干扰水平低,类胡萝卜素水平高)。我们使用层次聚类和成对相关分析,以及为此目的开发的一种新的网络相关分析方法,来评估转基因叶片和块茎中转录物和代谢物水平的扰动。通过“基于特征的有罪推定”方法,我们鉴定了一些参与类胡萝卜素生物合成的内源基因,这些基因可能在 Golden 块茎中发挥关键的调控作用,是进一步优化块茎类胡萝卜素含量的候选基因。