Department of Mathematics, Idaho State University, 921 S8th Avenue, Stop 8085, Pocatello, ID 83209-8085, USA.
Phys Med Biol. 2010 Aug 21;55(16):4687-702. doi: 10.1088/0031-9155/55/16/005. Epub 2010 Jul 30.
A model of irradiated cell survival based on rigorous accounting of microdosimetric effects is developed. The model does not assume that the distribution of lesions is Poisson and is applicable to low, intermediate and high acute doses of low or high LET radiation. For small doses, the model produces the linear-quadratic (LQ) model. However, for high doses the best-fitting LQ model grossly underestimates cell survival. The same is also true for the conventional LQ model, only more so. It is shown that for high doses, the microdosimetric distribution can be approximated by a Gaussian distribution, and the corresponding cell survival probabilities are compared.
基于严格的微剂量效应核算,建立了一个辐照细胞存活模型。该模型不假设损伤分布为泊松分布,适用于低、中和高急性剂量的低或高 LET 辐射。对于小剂量,该模型产生线性二次(LQ)模型。然而,对于高剂量,最佳拟合的 LQ 模型严重低估了细胞存活。对于传统的 LQ 模型也是如此,只是更严重。结果表明,对于高剂量,微剂量分布可以用高斯分布来近似,并且比较了相应的细胞存活概率。