Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA.
Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, USA.
Int J Radiat Biol. 2021;97(1):50-59. doi: 10.1080/09553002.2020.1784489. Epub 2020 Jul 2.
The linear-quadratic (LQ) model represents a simple and robust approximation for many mechanistically-motivated models of radiation effects. We believe its tendency to overestimate cell killing at high doses derives from the usual assumption that radiogenic lesions are distributed according to Poisson statistics.
In that context, we investigated the effects of overdispersed lesion distributions, such as might occur from considerations of microdosimetric energy deposition patterns, differences in DNA damage complexities and repair pathways, and/or heterogeneity of cell responses to radiation. Such overdispersion has the potential to reduce dose response curvature at high doses, while still retaining LQ dose dependence in terms of the number of lethal lesions per cell. Here we analyze several irradiated mammalian cell and yeast survival data sets, using the LQ model with Poisson errors, two LQ model variants with customized negative binomial (NB) error distributions, the Padé-linear-quadratic, and Two-component models. We compared the performances of all models on each data set by information-theoretic analysis, and assessed the ability of each to predict survival at high doses, based on fits to low/intermediate doses.
Changing the error distribution, while keeping the LQ dose dependence for the mean, enables the NB LQ model variants to outperform the standard LQ model, often providing better fits to experimental data than alternative models.
The NB error distribution approach maintains the core mechanistic assumptions of the LQ formalism, while providing superior estimates of cell survival following high doses used in radiotherapy. Importantly, it could also be useful in improving the predictions of low dose/dose rate effects that are of major concern to the field of radiation protection.
线性二次(LQ)模型是许多基于机制的辐射效应模型的简单而稳健的近似。我们认为,它在高剂量下高估细胞杀伤的趋势源于通常假设放射性损伤根据泊松统计分布的假设。
在这种情况下,我们研究了过度分散的损伤分布的影响,例如可能由于微剂量能量沉积模式、DNA 损伤复杂性和修复途径的差异以及/或细胞对辐射的反应异质性的考虑。这种过度分散有可能降低高剂量下的剂量反应曲率,同时仍然保留 LQ 剂量依赖性,即每个细胞的致死性损伤数量。在这里,我们使用泊松误差的 LQ 模型、两个具有定制负二项式(NB)误差分布的 LQ 模型变体、Pade 线性二次和双组分模型,分析了几个受辐照的哺乳动物细胞和酵母存活数据集。我们通过信息论分析比较了所有模型在每个数据集上的性能,并根据对低/中剂量的拟合,评估了每个模型在高剂量下预测存活的能力。
改变误差分布,同时保持 LQ 剂量依赖性的平均值,使 NB LQ 模型变体能够优于标准 LQ 模型,通常能够更好地拟合实验数据比替代模型。
NB 误差分布方法保持了 LQ 形式主义的核心机制假设,同时提供了更好的高剂量放疗后细胞存活估计。重要的是,它还可以用于改善低剂量/剂量率效应的预测,这是辐射防护领域的主要关注点。