Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Tissue Eng Part A. 2010 Dec;16(12):3709-18. doi: 10.1089/ten.TEA.2010.0190. Epub 2010 Sep 6.
Human mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p < 0.0001). The 45-day constructs exhibited mechanical properties on the order of magnitude of native articular cartilage (aggregate, Young's, and shear moduli of 0.15, 0.12, and 0.033 MPa, respectively). Gene expression was characteristic of chondrogenesis and endochondral bone formation, with sequential regulation of Sox-9, collagen type II, aggrecan, core binding factor alpha 1 (Cbfα1)/Runx2, bone sialoprotein, bone morphogenetic protein-2, and osteocalcin. In contrast, osteogenic medium produced limited osteogenesis. Long-term culture of hMSC on 3D scaffolds resulted in chondrogenesis and regional mineralization at the interface between soft, newly formed engineered cartilage, and stiffer underlying scaffold. These findings merit consideration when developing grafts for osteochondral defect repair.
人骨髓间充质干细胞(hMSCs)和三维(3D)编织聚己内酯(PCL)支架是骨骼组织工程的有前途的工具。我们假设,体外培养时间和培养基添加剂可以单独和交互地影响基于 hMSCs 和 3D 聚己内酯的工程组织的结构、组成、力学和分子特性。骨髓 hMSCs 悬浮在胶原凝胶中,接种在支架上,并在软骨形成和/或成骨条件下培养 1、21 或 45 天。分析了结构、组成、生物力学和基因表达。在软骨形成培养基中,第 21 天形成软骨组织,第 45 天在与下面支架界面处的新形成的细胞外基质中观察到肥大矿化。糖胺聚糖、羟脯氨酸和钙含量以及碱性磷酸酶活性取决于培养时间和培养基添加剂,具有显著的交互作用(所有 p 值均 < 0.0001)。45 天的构建体表现出与天然关节软骨相当的力学性能(聚集、杨氏和剪切模量分别为 0.15、0.12 和 0.033 MPa)。基因表达特征为软骨形成和软骨内骨形成, Sox-9、胶原 II 型、聚集蛋白聚糖、核心结合因子α 1(Cbfα1)/Runx2、骨唾液蛋白、骨形态发生蛋白-2 和骨钙素的顺序调节。相比之下,成骨培养基产生有限的成骨作用。hMSC 在 3D 支架上的长期培养导致在柔软的新形成的工程软骨与较硬的下面支架之间的界面处发生软骨形成和区域矿化。在开发用于骨软骨缺损修复的移植物时,这些发现值得考虑。