Embody, Inc., Norfolk, VA, 23508, USA.
Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia, Charlottesville, VA, 22903, USA.
Adv Healthc Mater. 2022 Feb;11(3):e2101357. doi: 10.1002/adhm.202101357. Epub 2021 Dec 19.
Musculoskeletal tissue injuries, including volumetric muscle loss (VML), are commonplace and often lead to permanent disability and deformation. Addressing this healthcare need, an advanced biomanufacturing platform, assembled cell-decorated collagen (AC-DC) bioprinting, is invented to rapidly and reproducibly create living biomaterial implants, using clinically relevant cells and strong, microfluidic wet-extruded collagen microfibers. Quantitative analysis shows that the directionality and distribution of cells throughout AC-DC implants mimic native musculoskeletal tissue. AC-DC bioprinted implants further approximate or exceed the strength and stiffness of human musculoskeletal tissue and exceed collagen hydrogel tensile properties by orders of magnitude. In vivo, AC-DC implants are assessed in a critically sized muscle injury in the hindlimb, with limb torque generation potential measured over 12 weeks. Both acellular and cellular implants promote functional recovery compared to the unrepaired group, with AC-DC implants containing therapeutic muscle progenitor cells promoting the highest degree of recovery. Histological analysis and automated image processing of explanted muscle cross-sections reveal increased total muscle fiber count, median muscle fiber size, and increased cellularization for injuries repaired with cellularized implants. These studies introduce an advanced bioprinting method for generating musculoskeletal tissue analogs with near-native biological and biomechanical properties with the potential to repair myriad challenging musculoskeletal injuries.
骨骼肌组织损伤,包括容积性肌肉损失(VML),十分常见,往往导致永久性残疾和畸形。为了解决这一医疗需求,发明了一种先进的生物制造平台,即细胞装饰胶原(AC-DC)生物打印,用于快速且可重复地创建使用临床相关细胞和强韧、微流控湿法挤出胶原微纤维的活体生物材料植入物。定量分析表明,AC-DC 植入物中细胞的方向性和分布模拟了天然的骨骼肌组织。AC-DC 生物打印的植入物进一步接近或超过了人骨骼肌组织的强度和刚性,并超过了胶原水凝胶拉伸性能的数量级。在体内,AC-DC 植入物在下肢的临界大小肌肉损伤中进行评估,通过 12 周的时间测量肢体扭矩产生潜力。与未修复组相比,无细胞和细胞植入物都促进了功能恢复,含有治疗性肌肉祖细胞的 AC-DC 植入物促进了最高程度的恢复。对植入肌肉的横截面进行组织学分析和自动图像处理,发现细胞化植入物修复的损伤中的总肌纤维数量、肌纤维中位数和细胞化程度增加。这些研究介绍了一种先进的生物打印方法,用于生成具有接近天然生物和生物力学特性的骨骼肌组织模拟物,具有修复多种挑战性骨骼肌损伤的潜力。