Suppr超能文献

组装细胞装饰胶原(AC-DC)纤维生物打印植入物具有肌肉骨骼组织特性,可促进体积性肌肉损失的功能恢复。

Assembled Cell-Decorated Collagen (AC-DC) Fiber Bioprinted Implants with Musculoskeletal Tissue Properties Promote Functional Recovery in Volumetric Muscle Loss.

机构信息

Embody, Inc., Norfolk, VA, 23508, USA.

Department of Biomedical Engineering and Orthopaedic Surgery, University of Virginia, Charlottesville, VA, 22903, USA.

出版信息

Adv Healthc Mater. 2022 Feb;11(3):e2101357. doi: 10.1002/adhm.202101357. Epub 2021 Dec 19.

Abstract

Musculoskeletal tissue injuries, including volumetric muscle loss (VML), are commonplace and often lead to permanent disability and deformation. Addressing this healthcare need, an advanced biomanufacturing platform, assembled cell-decorated collagen (AC-DC) bioprinting, is invented to rapidly and reproducibly create living biomaterial implants, using clinically relevant cells and strong, microfluidic wet-extruded collagen microfibers. Quantitative analysis shows that the directionality and distribution of cells throughout AC-DC implants mimic native musculoskeletal tissue. AC-DC bioprinted implants further approximate or exceed the strength and stiffness of human musculoskeletal tissue and exceed collagen hydrogel tensile properties by orders of magnitude. In vivo, AC-DC implants are assessed in a critically sized muscle injury in the hindlimb, with limb torque generation potential measured over 12 weeks. Both acellular and cellular implants promote functional recovery compared to the unrepaired group, with AC-DC implants containing therapeutic muscle progenitor cells promoting the highest degree of recovery. Histological analysis and automated image processing of explanted muscle cross-sections reveal increased total muscle fiber count, median muscle fiber size, and increased cellularization for injuries repaired with cellularized implants. These studies introduce an advanced bioprinting method for generating musculoskeletal tissue analogs with near-native biological and biomechanical properties with the potential to repair myriad challenging musculoskeletal injuries.

摘要

骨骼肌组织损伤,包括容积性肌肉损失(VML),十分常见,往往导致永久性残疾和畸形。为了解决这一医疗需求,发明了一种先进的生物制造平台,即细胞装饰胶原(AC-DC)生物打印,用于快速且可重复地创建使用临床相关细胞和强韧、微流控湿法挤出胶原微纤维的活体生物材料植入物。定量分析表明,AC-DC 植入物中细胞的方向性和分布模拟了天然的骨骼肌组织。AC-DC 生物打印的植入物进一步接近或超过了人骨骼肌组织的强度和刚性,并超过了胶原水凝胶拉伸性能的数量级。在体内,AC-DC 植入物在下肢的临界大小肌肉损伤中进行评估,通过 12 周的时间测量肢体扭矩产生潜力。与未修复组相比,无细胞和细胞植入物都促进了功能恢复,含有治疗性肌肉祖细胞的 AC-DC 植入物促进了最高程度的恢复。对植入肌肉的横截面进行组织学分析和自动图像处理,发现细胞化植入物修复的损伤中的总肌纤维数量、肌纤维中位数和细胞化程度增加。这些研究介绍了一种先进的生物打印方法,用于生成具有接近天然生物和生物力学特性的骨骼肌组织模拟物,具有修复多种挑战性骨骼肌损伤的潜力。

相似文献

引用本文的文献

1
models of muscle spindles: From traditional methods to 3D bioprinting strategies.肌梭模型:从传统方法到3D生物打印策略
J Tissue Eng. 2025 Jul 23;16:20417314251343388. doi: 10.1177/20417314251343388. eCollection 2025 Jan-Dec.
2
Microfluidics-Based Microcarriers for Live-Cell Delivery.用于活细胞递送的基于微流控技术的微载体
Adv Sci (Weinh). 2025 May;12(18):e2414410. doi: 10.1002/advs.202414410. Epub 2025 Apr 4.
3
Freeze-Dried Porous Collagen Scaffolds for the Repair of Volumetric Muscle Loss Injuries.用于修复大面积肌肉损失损伤的冻干多孔胶原支架
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1598-1611. doi: 10.1021/acsbiomaterials.4c01601. Epub 2025 Feb 5.

本文引用的文献

4
3D printing of multilayered scaffolds for rotator cuff tendon regeneration.用于肩袖肌腱再生的多层支架的3D打印
Bioact Mater. 2020 May 7;5(3):636-643. doi: 10.1016/j.bioactmat.2020.04.017. eCollection 2020 Sep.
6
Opportunities and challenges of translational 3D bioprinting.转化 3D 生物打印的机遇与挑战。
Nat Biomed Eng. 2020 Apr;4(4):370-380. doi: 10.1038/s41551-019-0471-7. Epub 2019 Nov 6.
10
Current Methods for Skeletal Muscle Tissue Repair and Regeneration.骨骼肌组织修复与再生的当前方法。
Biomed Res Int. 2018 Apr 16;2018:1984879. doi: 10.1155/2018/1984879. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验