Suppr超能文献

在水溶液中,电喷雾电离中超导试剂对非共价复合物结构的影响。

Effects of supercharging reagents on noncovalent complex structure in electrospray ionization from aqueous solutions.

机构信息

Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, USA.

出版信息

J Am Soc Mass Spectrom. 2010 Oct;21(10):1762-74. doi: 10.1016/j.jasms.2010.06.012. Epub 2010 Jun 25.

Abstract

The effects of two supercharging reagents, m-nitrobenzyl alcohol (m-NBA) and sulfolane, on the charge-state distributions and conformations of myoglobin ions formed by electrospray ionization were investigated. Addition of 0.4% m-NBA to aqueous ammonium acetate solutions of myoglobin results in an increase in the maximum charge state from 9+ to 19+, and an increase in the average charge state from 7.9+ to 11.7+, compared with solutions without m-NBA. The extent of supercharging with sulfolane on a per mole basis is lower than that with m-NBA, but comparable charging was obtained at higher concentration. Arrival time distributions obtained from traveling wave ion mobility spectrometry show that the higher charge state ions that are formed with these supercharging reagents are significantly more unfolded than lower charge state ions. Results from circular dichroism spectroscopy show that sulfolane can act as chemical denaturant, destabilizing myoglobin by ∼1.5 kcal/mol/M at 25°C. Because these supercharging reagents have low vapor pressures, aqueous droplets are preferentially enriched in these reagents as evaporation occurs. Less evaporative cooling will occur after the droplets are substantially enriched in the low volatility supercharging reagent, and the droplet temperature should be higher compared with when these reagents are not present. Protein unfolding induced by chemical and/or thermal denaturation in the electrospray droplet appears to be the primary origin of the enhanced charging observed for noncovalent protein complexes formed from aqueous solutions that contain these supercharging reagents, although other factors almost certainly influence the extent of charging as well.

摘要

研究了两种超电荷试剂 m-硝基苄醇(m-NBA)和环丁砜对电喷雾电离形成的肌红蛋白离子的荷质比分布和构象的影响。与不含 m-NBA 的溶液相比,向肌红蛋白的水溶液中添加 0.4%的 m-NBA 可将最大荷质比从 9+增加到 19+,并将平均荷质比从 7.9+增加到 11.7+。从理论上计算,与 m-NBA 相比,环丁砜的超电荷程度较低,但在更高的浓度下可以获得可比的充电效果。来自飞行时间离子淌度谱的到达时间分布表明,与这些超电荷试剂形成的较高荷质比离子比较低荷质比离子明显更伸展。圆二色性光谱的结果表明,环丁砜可以作为化学变性剂,使肌红蛋白在 25°C 时的稳定性降低约 1.5 kcal/mol/M。由于这些超电荷试剂的蒸气压较低,因此在蒸发过程中,水相液滴中优先富集这些试剂。与不添加这些试剂相比,当液滴中大量富集低挥发性超电荷试剂后,蒸发冷却的程度会降低,并且液滴温度应该会更高。在含有这些超电荷试剂的水溶液中形成的非共价蛋白质复合物观察到的增强的非共价结合,似乎是电喷雾液滴中化学和/或热变性引起的蛋白质伸展的主要原因,尽管其他因素也几乎肯定会影响充电程度。

相似文献

1
Effects of supercharging reagents on noncovalent complex structure in electrospray ionization from aqueous solutions.
J Am Soc Mass Spectrom. 2010 Oct;21(10):1762-74. doi: 10.1016/j.jasms.2010.06.012. Epub 2010 Jun 25.
2
New supercharging reagents produce highly charged protein ions in native mass spectrometry.
Analyst. 2015 Nov 7;140(21):7184-94. doi: 10.1039/c5an01710f.
3
Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution.
J Am Soc Mass Spectrom. 2009 Oct;20(10):1933-43. doi: 10.1016/j.jasms.2009.06.012. Epub 2009 Jul 3.
4
Protein conformation and supercharging with DMSO from aqueous solution.
J Am Soc Mass Spectrom. 2011 Jul;22(7):1178-86. doi: 10.1007/s13361-011-0116-x. Epub 2011 Apr 19.
5
Supercharging protein complexes from aqueous solution disrupts their native conformations.
J Am Soc Mass Spectrom. 2012 Feb;23(2):191-200. doi: 10.1007/s13361-011-0301-y. Epub 2011 Dec 13.
6
Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process.
Anal Chem. 2016 May 17;88(10):5345-54. doi: 10.1021/acs.analchem.6b00650. Epub 2016 Apr 27.
7
New reagents for increasing ESI multiple charging of proteins and protein complexes.
J Am Soc Mass Spectrom. 2010 Jan;21(1):127-31. doi: 10.1016/j.jasms.2009.09.014. Epub 2009 Sep 30.
8
Desalting protein ions in native mass spectrometry using supercharging reagents.
Analyst. 2014 Oct 7;139(19):4810-9. doi: 10.1039/c4an01085j.
9
The role of conformational flexibility on protein supercharging in native electrospray ionization.
Phys Chem Chem Phys. 2011 Nov 7;13(41):18288-96. doi: 10.1039/c1cp20277d. Epub 2011 Mar 14.
10
Mechanism of Electrospray Supercharging for Unfolded Proteins: Solvent-Mediated Stabilization of Protonated Sites During Chain Ejection.
Anal Chem. 2019 May 21;91(10):6943-6952. doi: 10.1021/acs.analchem.9b01470. Epub 2019 May 10.

引用本文的文献

1
Native Top-Down Analysis of Membrane Protein Complexes Directly From In Vitro and Native Membranes.
Mol Cell Proteomics. 2025 May 14;24(7):100993. doi: 10.1016/j.mcpro.2025.100993.
2
Stabilization of Protein Interactions through Electrospray Additives in Negative Ion Mode Native Mass Spectrometry.
Anal Chem. 2025 May 27;97(20):10738-10744. doi: 10.1021/acs.analchem.5c00757. Epub 2025 May 14.
3
Triboelectric Nanogenerators: Low-Cost Power Supplies for Improved Electrospray Ionization.
Int J Mass Spectrom. 2024 Jan;495. doi: 10.1016/j.ijms.2023.117167. Epub 2023 Nov 10.
5
Current perspectives on supercharging reagents in electrospray ionization mass spectrometry.
RSC Adv. 2021 Jun 7;11(33):20355-20369. doi: 10.1039/d1ra00745a. eCollection 2021 Jun 3.
6
Approaches to Heterogeneity in Native Mass Spectrometry.
Chem Rev. 2022 Apr 27;122(8):7909-7951. doi: 10.1021/acs.chemrev.1c00696. Epub 2021 Sep 1.
7
A kinetic description of how interfaces accelerate reactions in micro-compartments.
Chem Sci. 2020 Jul 27;11(32):8533-8545. doi: 10.1039/d0sc03189e.
8
Structural Characterization of Carbonic Anhydrase-Arylsulfonamide Complexes Using Ultraviolet Photodissociation Mass Spectrometry.
J Am Soc Mass Spectrom. 2021 Jun 2;32(6):1370-1379. doi: 10.1021/jasms.1c00004. Epub 2021 Mar 8.

本文引用的文献

1
Mass Spectrometry of an Intact Virus.
Angew Chem Int Ed Engl. 2001 Feb 2;40(3):541-544. doi: 10.1002/1521-3773(20010202)40:3<541::AID-ANIE541>3.0.CO;2-K.
2
Ion formation from charged droplets: Roles of geometry, energy, and time.
J Am Soc Mass Spectrom. 1993 Jul;4(7):524-35. doi: 10.1016/1044-0305(93)85014-O.
3
Ultrahigh-mass mass spectrometry of single biomolecules and bioparticles.
Annu Rev Anal Chem (Palo Alto Calif). 2009;2:169-85. doi: 10.1146/annurev-anchem-060908-155245.
4
New reagents for increasing ESI multiple charging of proteins and protein complexes.
J Am Soc Mass Spectrom. 2010 Jan;21(1):127-31. doi: 10.1016/j.jasms.2009.09.014. Epub 2009 Sep 30.
6
Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution.
J Am Soc Mass Spectrom. 2009 Oct;20(10):1933-43. doi: 10.1016/j.jasms.2009.06.012. Epub 2009 Jul 3.
10
Electrospray: from ions in solution to ions in the gas phase, what we know now.
Mass Spectrom Rev. 2009 Nov-Dec;28(6):898-917. doi: 10.1002/mas.20247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验