Verellen D, Depuydt T, Gevaert T, Linthout N, Tournel K, Duchateau M, Reynders T, Storme G, De Ridder M
Department of Radiotherapy, UZ Brussel, Oncologisch Centrum, Laarbeeklaan 101, 1090 Brussels, Belgium.
Cancer Radiother. 2010 Oct;14(6-7):446-54. doi: 10.1016/j.canrad.2010.06.002. Epub 2010 Jul 31.
The limited ability to control for a tumour's location compromises the accuracy with which radiation can be delivered to tumour-bearing tissue. The resultant requirement for larger treatment volumes to accommodate target uncertainty restricts the radiation dose because more surrounding normal tissue is exposed. With image-guided radiation therapy (IGRT), these volumes can be optimized and tumouricidal doses may be delivered, achieving maximum tumour control with minimal complications. Moreover, with the ability of high precision dose delivery and real-time knowledge of the target volume location, IGRT has initiated the exploration of new indications in radiotherapy such as hypofractionated radiotherapy (or stereotactic body radiotherapy), deliberate inhomogeneous dose distributions coping with tumour heterogeneity (dose painting by numbers and biologically conformal radiation therapy), and adaptive radiotherapy. In short: "individualized radiotherapy". Tumour motion management, especially for thoracic tumours, is a particular problem in this context both for the delineation of tumours and organs at risk as well as during the actual treatment delivery. The latter will be covered in this paper with some examples based on the experience of the UZ Brussel. With the introduction of the NOVALIS system (BrainLAB, Feldkirchen, Germany) in 2000 and consecutive prototypes of the ExacTrac IGRT system, gradually a hypofractionation treatment protocol was introduced for the treatment of lung tumours and liver metastases evolving from motion-encompassing techniques towards respiratory-gated radiation therapy with audio-visual feedback and most recently dynamic tracking using the VERO system (BrainLAB, Feldkirchen, Germany). This evolution will be used to illustrate the recent developments in this particular field of research.
控制肿瘤位置的能力有限,会影响向有肿瘤组织输送辐射的准确性。由于需要更大的治疗体积来适应靶区不确定性,这就限制了辐射剂量,因为更多的周围正常组织会受到照射。借助图像引导放射治疗(IGRT),这些体积可以得到优化,并且可以给予肿瘤杀伤剂量,以最小的并发症实现最大程度的肿瘤控制。此外,凭借高精度剂量输送能力以及对靶区体积位置的实时了解,IGRT开启了放射治疗新适应证的探索,如大分割放射治疗(或立体定向体部放射治疗)、应对肿瘤异质性的有意不均匀剂量分布(数字引导调强放疗和生物适形放射治疗)以及自适应放射治疗。简而言之:“个体化放射治疗”。在这种情况下,肿瘤运动管理,尤其是对于胸部肿瘤,无论是在肿瘤和危及器官的勾画方面,还是在实际治疗实施过程中,都是一个特殊问题。本文将根据布鲁塞尔大学医院的经验,通过一些实例来阐述后者。随着2000年NOVALIS系统(德国费尔德kirchen市BrainLAB公司)的引入以及ExacTrac IGRT系统的后续原型机的出现,逐渐引入了一种大分割治疗方案,用于治疗肺部肿瘤和肝转移瘤,从包含运动的技术发展到具有视听反馈的呼吸门控放射治疗,以及最近使用VERO系统(德国费尔德kirchen市BrainLAB公司)的动态跟踪。这种演变将用于说明这一特定研究领域的最新进展。