Department of Obstetrics and Gynaecology, University of Tuebingen, Calwer Strasse 7, 72076 Tübingen, Germany.
Eur J Obstet Gynecol Reprod Biol. 2010 Dec;153(2):131-7. doi: 10.1016/j.ejogrb.2010.07.007. Epub 2010 Aug 2.
To compare 35 commonly used formulae for small and average sized fetuses on their accuracy in estimating the birth weight in fetuses of 1500 g or less.
For this retrospective study a database search was performed for all singleton pregnancies without structural or chromosomal defects and with a birth weight of 1500 g or less where the last ultrasound examination was performed within seven days before delivery. Percentage error and absolute percentage error were calculated based on 35 different weight estimation formulae. Multiple regression analysis was used to determine the significant contributors to the absolute percentage error.
One hundred and ninety-three cases fulfilled the inclusion criteria. The median birth weight was 990 g. The percentage error ranged between -15.2% (underestimation with the Merz I formula) and 37.4% (overestimation with the Jordaan formula) and the respective standard deviations between 10.5% (Mielke I) and 54.0% (Schillinger), respectively. The absolute percentage error was between 8.5% and 37.6%. The most accurate weight estimation was achieved with the formula from Mielke (percentage error 1.8% and absolute percentage error 8.5%). Multiple regression analysis showed that significant contributors to the percentage error of the Mielke formula were biparietal diameter (OR=-0.206, p=0.045), occipitofrontal diameter (OR=0.765, p<0.0001), abdominal circumference (OR=-2.953, p<0.0001), femur length (OR=-0.903, p<0.0001), head to abdomen ratio (OR=-1.080, p<0.0001) and fetal weight (OR=2.847, p<0.0001).
When estimating fetal weight in fetuses weighing 1500 g or less, one has to be aware of the great differences in accuracy among the formulae.
比较 35 种常用于估算 1500 克以下胎儿体重的公式在估计体重方面的准确性。
这项回顾性研究对所有无结构或染色体缺陷且出生体重为 1500 克或以下的单胎妊娠进行了数据库检索,且最后一次超声检查在分娩前 7 天内进行。根据 35 种不同的体重估计公式,计算了百分比误差和绝对百分比误差。使用多元回归分析确定绝对百分比误差的显著贡献因素。
193 例符合纳入标准。中位数出生体重为 990 克。百分比误差范围为-15.2%(Merz I 公式低估)至 37.4%(Jordaan 公式高估),相应的标准差分别为 10.5%(Mielke I)和 54.0%(Schillinger)。绝对百分比误差在 8.5%至 37.6%之间。Mielke 公式的体重估计最准确(百分比误差 1.8%,绝对百分比误差 8.5%)。多元回归分析显示,Mielke 公式的百分比误差的显著贡献因素为双顶间径(OR=-0.206,p=0.045)、枕额径(OR=0.765,p<0.0001)、腹围(OR=-2.953,p<0.0001)、股骨长(OR=-0.903,p<0.0001)、头腹比(OR=-1.080,p<0.0001)和胎儿体重(OR=2.847,p<0.0001)。
当估算 1500 克以下胎儿的体重时,必须意识到公式在准确性方面存在很大差异。