Department of Chemical Engineering, Hamburg University of Technology, D-21073 Hamburg, Germany.
J Am Chem Soc. 2010 Aug 25;132(33):11525-38. doi: 10.1021/ja102261m.
The alkylation of benzene by ethene over H-ZSM-5 is analyzed by means of a hybrid MP2:DFT scheme. Density functional calculations applying periodic boundary conditions (PBE functional) are combined with MP2 energy calculations on a series of cluster models of increasing size which allows extrapolation to the periodic MP2 limit. Basis set truncation errors are estimated by extrapolation of the MP2 energy to the complete basis set limit. Contributions from higher-order correlation effects are accounted for by CCSD(T) coupled cluster calculations. The sum of all contributions provides the "final estimates" for adsorption energies and energy barriers. Dispersion contributes significantly to the potential energy surface. As a result, the MP2:DFT potential energy profile is shifted downward compared to the PBE profile. More importantly, this shift is not the same for reactants and transition structures due to different self-interaction correction errors. The final enthalpies for ethene, benzene, and ethylbenzene adsorption on the Brønsted acid site at 298 K are -46, -78, and -110 kJ/mol, respectively. The intrinsic enthalpy barriers at 653 K are 117 and 119/94 kJ/mol for the one- and two-step alkylation, respectively. Intrinsic rate coefficients calculated by means of transition state theory are converted to apparent Arrhenius parameters by means of the multicomponent adsorption equilibrium. The simulated apparent activation energy (66 kJ/mol) agrees with experimental data (58-76 kJ/mol) within the uncertainty limit of the calculations. Adsorption energies obtained by adding a damped dispersion term to the PBE energies (PBE+D), agree within +/-7 kJ/mol, with the "final estimates", except for physisorption (pi-complex formation) and chemisorption of ethene (ethoxide formation) for which the PBE+D energies are 12.4 and 26.0 kJ/mol, respectively larger than the "final estimates". For intrinsic energy barriers, the PBE+D approach does not improve pure PBE results.
采用杂化 MP2:DFT 方案分析了乙烯在 H-ZSM-5 上对苯的烷基化反应。应用周期性边界条件的密度泛函计算(PBE 函数)与一系列大小不断增加的簇模型的 MP2 能量计算相结合,允许外推到周期性 MP2 极限。通过将 MP2 能量外推到完全基组极限来估计基组截断误差。通过 CCSD(T)耦合簇计算来考虑高阶相关效应的贡献。所有贡献的总和为吸附能和能垒提供了“最终估计值”。色散对势能面有重要贡献。因此,与 PBE 曲线相比,MP2:DFT 势能曲线向下移动。更重要的是,由于不同的自相互作用校正误差,反应物和过渡态的这种移动并不相同。在 298 K 时,Brønsted 酸位上乙烯、苯和乙苯的吸附的最终焓分别为-46、-78 和-110 kJ/mol。在 653 K 时,一步和两步烷基化的固有焓垒分别为 117 和 119/94 kJ/mol。通过过渡态理论计算的本征速率系数通过多组分吸附平衡转化为表观 Arrhenius 参数。模拟的表观活化能(66 kJ/mol)与实验数据(58-76 kJ/mol)在计算的不确定度范围内一致。通过向 PBE 能量中添加阻尼色散项(PBE+D)获得的吸附能,除了物理吸附(π-配合物形成)和乙烯的化学吸附(乙氧基形成)之外,与“最终估计值”在 +/-7 kJ/mol 范围内一致,对于后两者,PBE+D 能量分别比“最终估计值”大 12.4 和 26.0 kJ/mol。对于本征能垒,PBE+D 方法并没有改进纯 PBE 结果。