Institut für Chemie, Unter den Linden 6 and Center of Excellence UNICAT, Humboldt Universität Berlin, 10117 Berlin, Germany.
Phys Chem Chem Phys. 2010 Nov 14;12(42):14330-40. doi: 10.1039/c0cp01261k. Epub 2010 Oct 1.
We examine the adsorption of CH(4) on the MgO(001) surface by a hybrid approach. It combines MP2 calculations with extrapolation to the complete basis set limit for the adsorption site and the CH(4)-CH(4) pair interactions in the adsorbate layer, with DFT+dispersion calculations under periodic boundary conditions for the whole system. To the total binding energy of 10.7 kJ mol(-1), the DFT+D(ispersion) correction contributes 0.7 kJ mol(-1) only, showing that the Mg(9)O(9) two-layer surface model is an excellent choice and that the interaction between the CH(4) molecules in the adsorbate layer is dominated by pair interactions. Contributions due to relaxation of the atom positions of 0.6 kJ mol(-1) (evaluated at DFT+dispersion) and of higher order correlation effects of 2.0 kJ mol(-1) (evaluated by CCSD(T)) yield a final estimate of 13.3 kJ mol(-1). To this total adsorption energy, the lateral interactions between the CH(4) molecules in the adsorbate layer contribute substantially, 4.1 kJ mol(-1)."Observed" desorption energies of 15.3 and 16.0 kJ mol(-1) have been derived from the observed Arrhenius desorption barriers (12.6 and 13.1 kJ mol(-1)) using thermal enthalpy contributions and a substantial zero-point energy (4.2 kJ mol(-1)) calculated from DFT+D vibrational frequencies. The comparison shows that our final hybrid MP2 : PBE+D+ΔCCSD(T) estimate has reached chemical accuracy. It misses 2-3 kJ mol(-1) of binding only, which is most likely due to missing higher order correlation effects.PBE+D(ispersion) itself yields an adsorption energy that agrees within 1 kJ mol(-1) with our final hybrid MP2 : PBE+D+ΔCCSD(T) estimate.
我们采用混合方法研究了 CH(4)在 MgO(001)表面的吸附。该方法结合了 MP2 计算,对吸附位置和吸附层中 CH(4)-CH(4)对相互作用进行完全基组极限外推,以及在周期性边界条件下对整个体系进行 DFT+色散计算。总结合能为 10.7 kJ mol(-1),DFT+D(色散)校正仅贡献 0.7 kJ mol(-1),表明 Mg(9)O(9)双层表面模型是一个极好的选择,并且吸附层中 CH(4)分子之间的相互作用主要由对相互作用主导。原子位置弛豫的贡献为 0.6 kJ mol(-1)(在 DFT+色散下评估)和更高阶相关效应的贡献为 2.0 kJ mol(-1)(通过 CCSD(T)评估),得出最终估计值为 13.3 kJ mol(-1)。对于总吸附能,吸附层中 CH(4)分子之间的横向相互作用贡献很大,为 4.1 kJ mol(-1)。“观察到的”脱附能为 15.3 和 16.0 kJ mol(-1),是从观察到的 Arrhenius 脱附势垒(12.6 和 13.1 kJ mol(-1))中得出的,使用热焓贡献和从 DFT+D 振动频率计算的大量零点能(4.2 kJ mol(-1))。比较表明,我们最终的混合 MP2 : PBE+D+ΔCCSD(T)估计已经达到了化学精度。它只错过了 2-3 kJ mol(-1)的结合能,这很可能是由于缺少更高阶相关效应。PBE+D(色散)本身的吸附能与我们最终的混合 MP2 : PBE+D+ΔCCSD(T)估计值相差 1 kJ mol(-1)以内。