Suppr超能文献

Gem 直接抑制 P/Q 型电压门控 Ca2+通道不需要 Gem/Cavbeta 直接相互作用。

Direct inhibition of P/Q-type voltage-gated Ca2+ channels by Gem does not require a direct Gem/Cavbeta interaction.

机构信息

Department of Biological Sciences, Columbia University, New York, NY 10027, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14887-92. doi: 10.1073/pnas.1007543107. Epub 2010 Aug 2.

Abstract

The Rem, Rem2, Rad, and Gem/Kir (RGK) family of small GTP-binding proteins potently inhibits high voltage-activated (HVA) Ca(2+) channels, providing a powerful means of modulating neural, endocrine, and muscle functions. The molecular mechanisms of this inhibition are controversial and remain largely unclear. RGK proteins associate directly with Ca(2+) channel beta subunits (Ca(v)beta), and this interaction is widely thought to be essential for their inhibitory action. In this study, we investigate the molecular underpinnings of Gem inhibition of P/Q-type Ca(2+) channels. We find that a purified Gem protein markedly and acutely suppresses P/Q channel activity in inside-out membrane patches, that this action requires Ca(v)beta but not the Gem/Ca(v)beta interaction, and that Gem coimmunoprecipitates with the P/Q channel alpha(1) subunit (Ca(v)alpha(1)) in a Ca(v)beta-independent manner. By constructing chimeras between P/Q channels and Gem-insensitive low voltage-activated T-type channels, we identify a region encompassing transmembrane segments S1, S2, and S3 in the second homologous repeat of Ca(v)alpha(1) critical for Gem inhibition. Exchanging this region between P/Q and T channel Ca(v)alpha(1) abolishes Gem inhibition of P/Q channels and confers Ca(v)beta-dependent Gem inhibition to a chimeric T channel that also carries the P/Q I-II loop (a cytoplasmic region of Ca(v)alpha(1) that binds Ca(v)beta). Our results challenge the prevailing view regarding the role of Ca(v)beta in RGK inhibition of high voltage-activated Ca(2+) channels and prompt a paradigm in which Gem directly binds and inhibits Ca(v)beta-primed Ca(v)alpha(1) on the plasma membrane.

摘要

Rem、Rem2、Rad 和 Gem/Kir(RGK)家族的小分子 GTP 结合蛋白强烈抑制高电压激活(HVA)Ca(2+)通道,为调节神经、内分泌和肌肉功能提供了有力手段。这种抑制的分子机制存在争议,在很大程度上仍不清楚。RGK 蛋白直接与 Ca(2+)通道β亚基(Ca(v)β)结合,这种相互作用被广泛认为是其抑制作用所必需的。在这项研究中,我们研究了 Gem 抑制 P/Q 型 Ca(2+)通道的分子基础。我们发现,纯化的 Gem 蛋白在膜内向外膜片中显著且急性地抑制 P/Q 通道活性,这种作用需要 Ca(v)β,但不需要 Gem/Ca(v)β相互作用,并且 Gem 以 Ca(v)β独立的方式与 P/Q 通道α(1)亚基(Ca(v)α(1))共免疫沉淀。通过构建 P/Q 通道和 Gem 不敏感的低电压激活 T 型通道之间的嵌合体,我们确定了一个包含 Ca(v)α(1)第二同源重复中的跨膜片段 S1、S2 和 S3 的区域,对于 Gem 抑制至关重要。在 P/Q 和 T 通道 Ca(v)α(1)之间交换该区域,可消除 Gem 对 P/Q 通道的抑制,并使携带 P/Q I-II 环(Ca(v)α(1)的细胞质区域,与 Ca(v)β结合)的嵌合 T 通道获得 Ca(v)β依赖性的 Gem 抑制。我们的结果挑战了关于 Ca(v)β在 RGK 抑制高电压激活 Ca(2+)通道中的作用的主流观点,并提示 Gem 直接结合并抑制质膜上 Ca(v)β-引发的 Ca(v)α(1)的范例。

相似文献

3
Molecular determinants of Gem protein inhibition of P/Q-type Ca2+ channels.Gem 蛋白抑制 P/Q 型 Ca2+ 通道的分子决定因素。
J Biol Chem. 2012 Jun 29;287(27):22749-58. doi: 10.1074/jbc.M111.291872. Epub 2012 May 15.
6
Inhibition of Voltage-Gated Calcium Channels by RGK Proteins.RGK蛋白对电压门控钙通道的抑制作用。
Curr Mol Pharmacol. 2015;8(2):180-7. doi: 10.2174/1874467208666150507105613.

引用本文的文献

2
Into the spotlight: RGK proteins in skeletal muscle.进入聚光灯下:RGK 蛋白在骨骼肌中。
Cell Calcium. 2021 Sep;98:102439. doi: 10.1016/j.ceca.2021.102439. Epub 2021 Jul 4.
3
The molecular determinants of R-roscovitine block of hERG channels.hERG 通道阻滞的 R-罗司卡品的分子决定因素。
PLoS One. 2019 Sep 3;14(9):e0217733. doi: 10.1371/journal.pone.0217733. eCollection 2019.
5
Defining the MO's of RGK proteins.确定RGK蛋白的分子轨道。
Channels (Austin). 2016 Sep 2;10(5):333-335. doi: 10.1080/19336950.2016.1192845. Epub 2016 Jun 1.
8
RGK regulation of voltage-gated calcium channels.RGK对电压门控钙通道的调节
Sci China Life Sci. 2015 Jan;58(1):28-38. doi: 10.1007/s11427-014-4788-x. Epub 2015 Jan 10.

本文引用的文献

1
The ß subunit of voltage-gated Ca2+ channels.电压门控 Ca2+ 通道的 β 亚基。
Physiol Rev. 2010 Oct;90(4):1461-506. doi: 10.1152/physrev.00057.2009.
9
Molecular determinants of Rem2 regulation of N-type calcium channels.Rem2对N型钙通道调控的分子决定因素。
Biochem Biophys Res Commun. 2008 Apr 11;368(3):827-31. doi: 10.1016/j.bbrc.2008.02.020. Epub 2008 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验