Suppr超能文献

核壳纳米结构:提高荧光共振能量转移效率的策略。

Core-shell nanoarchitectures: a strategy to improve the efficiency of luminescence resonance energy transfer.

机构信息

Department of Instrumentation and Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

出版信息

ACS Nano. 2010 Sep 28;4(9):5389-97. doi: 10.1021/nn100820u.

Abstract

The development of core-shell nanoparticles has shown a wide range of new applications in the fields of chemistry, bioscience, and materials science because of their improved physical and chemical properties over their single-component counterparts. In the present work, we took the core-shell nanoarchitectures as an example to research the luminescence resonance energy transfer (LRET) process between a luminescent Tb3+ chelate, N,N,N(1),N(1)-[4'-phenyl-2,2':6',2'-terpyridine-6,6'-diyl]bis(methylenenitrilo)tetrakis(acetate)-Tb3+ (PTTA-Tb3+), and an organic dye, 5-carboxytetramethylrhodamine (CTMR). PTTA-Tb3+ and CTMR were chosen as the donor-acceptor pair of LRET in our model construction because of their effective spectral overlapping. The core-shell nanoparticles featuring a CTMR-SiO2 core surrounded by a concentric PTTA-Tb3+-SiO2 shell were prepared using a reverse microemulsion method. These nanoparticles are spherical, uniform in size, and highly photostable. The results of LRET experiments show that the sensitized emission lifetime of the acceptor in the nanoparticles is significantly prolonged (∼246 μs), which is attributed to the long emission lifetime of the Tb3+ chelate donor. According to the results of the steady-state and time-resolved luminescence spectroscopy, an energy transfer efficiency of ∼80% and a large Förster distance between the donor and the acceptor in the core-shell nanoparticles are calculated, respectively. The new core-shell nanoparticles with a high LRET efficiency and long Förster distance enable them to be promising optical probes for a variety of possible applications such as molecular imaging and multiplex signaling.

摘要

核壳纳米粒子的发展由于其在物理和化学性质上相对于单一成分的改善,在化学、生物科学和材料科学领域展示了广泛的新应用。在本工作中,我们以核壳纳米结构为例,研究了发光铽配合物 N,N,N(1),N(1)-[4'-苯基-2,2':6',2'-三联吡啶-6,6'-二基]双(亚甲基亚氨基)四乙酸合铽(PTTA-Tb3+)与有机染料 5-羧基四甲基罗丹明(CTMR)之间的荧光共振能量转移(LRET)过程。PTTA-Tb3+和 CTMR 被选为我们模型构建中 LRET 的供体-受体对,因为它们具有有效的光谱重叠。采用反相微乳液法制备了以 CTMR-SiO2 核为核心、PTTA-Tb3+-SiO2 壳为壳的核壳纳米粒子。这些纳米粒子呈球形,尺寸均匀,光稳定性高。LRET 实验结果表明,纳米粒子中受体的敏化发射寿命显著延长(∼246 μs),这归因于 Tb3+配合物供体的长发射寿命。根据稳态和时间分辨荧光光谱的结果,分别计算出核壳纳米粒子中能量转移效率约为 80%和供体与受体之间的大Förster 距离。具有高 LRET 效率和长 Förster 距离的新型核壳纳米粒子使它们成为各种潜在应用(如分子成像和多重信号)的有前途的光学探针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验