Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA.
J Drug Target. 2011 Jul;19(6):393-408. doi: 10.3109/1061186X.2010.504263. Epub 2010 Aug 3.
Poly(lactide-co-glycolide) (PLGA) microparticles have significant potential for sustained delivery of plasmid DNA (pDNA). However, unmodified PLGA microparticles have poor transfection efficiencies. In this study, we use several approaches to enhance the transfection efficiencies of PLGA microparticles in a HepG2 liver cell line. Polyethylenimine (PEI) is used to condense the pDNA prior to loading into the PLGA microparticles. This provides enhanced loading efficiencies and greater protection to the pDNA during the entrapment process. In addition, the pDNA used (ApoE) incorporates a hybrid liver-specific murine albumin enhancer/α1 antitrypsin promoter (AlbE/hAAT) to enhance transgene expression in human liver (HepG2) cells. The percentage of surfactant used in the preparation of the microparticles, the polymer composition of the PLGA, the ratio of the PEI to pDNA (N/P), the structure of the PEI and the potential utility of a galactose targeting ligand were then investigated to further optimize the efficacy of the cationic microparticle non-viral delivery system in transfecting HepG2 cells. For each PLGA PEI-pDNA microparticle formulation prepared, we evaluated particle size, ζ-potential, loading of pDNA, cytotoxicity, and transgene expression in HepG2 cells and control human embryonic kidney (HEK293) and monkey African green kidney fibroblast-like (COS7) cells. Loading PLGA particles with PEI-ApoE pDNA complexes resulted in a significant reduction in particle size when compared to PLGA microparticles loaded with ApoE pDNA alone. Scanning electron microscopy images showed that all the particle formulations were smooth and spherical in appearance. Incorporation of the cationic PEI in the PLGA particles changed the ζ-potential from negative to positive. Complexing PEI with ApoE pDNA increased the loading efficiency of the ApoE pDNA into the PLGA microparticles. The cytotoxicity of PLGA particles loaded with PEI-ApoE pDNA complexes was similar to PLGA particles loaded with ApoE pDNA alone. The transfection efficiency of all particle formulations prepared with ApoE pDNA was significantly higher in HepG2 cells when compared to HEK293 and COS7 cell lines. The release of PEI-pDNA complexes from particles prepared with different PLGA polymer compositions including PLGA 50-50, PLGA 75-25, and PLGA 85-15 was sustained in all cases but the release profile was dependent on the polymer composition. Transmission electron microscopy images showed that PEI-pDNA complexes remained structurally intact after release. The optimum formulation for PLGA particles loaded with PEI-ApoE pDNA complexes was prepared using 2% polyvinyl alcohol, 50-50 PLGA compositions and N/P ratios of 5-10. Strong sustained transgene expression in HepG2 cells was generated by PLGA PEI-ApoE pDNA particles up to the full 13 days tested.
聚(丙交酯-乙交酯)(PLGA)微球在质粒 DNA(pDNA)的持续释放方面具有很大的潜力。然而,未经修饰的 PLGA 微球的转染效率很差。在这项研究中,我们使用了几种方法来提高 HepG2 肝细胞系中 PLGA 微球的转染效率。聚乙烯亚胺(PEI)用于在将 pDNA 加载到 PLGA 微球之前对其进行浓缩。这提供了更高的加载效率,并在包埋过程中对 pDNA 提供了更大的保护。此外,所使用的 pDNA(ApoE)包含杂交的肝特异性鼠白蛋白增强子/α1 抗胰蛋白酶启动子(AlbE/hAAT),以增强人肝(HepG2)细胞中的转基因表达。然后研究了在制备微球中使用的表面活性剂的百分比、PLGA 的聚合物组成、PEI 与 pDNA 的比例(N/P)、PEI 的结构以及半乳糖靶向配体的潜在用途,以进一步优化阳离子微球非病毒传递系统在转染 HepG2 细胞中的功效。对于制备的每种 PLGA-PEI-pDNA 微球制剂,我们评估了粒径、ζ-电位、pDNA 的负载量、细胞毒性以及 HepG2 细胞和对照人胚肾(HEK293)和猴非洲绿肾成纤维样(COS7)细胞中的转基因表达。与单独负载 ApoE pDNA 的 PLGA 微球相比,负载有 PEI-ApoE pDNA 复合物的 PLGA 颗粒的粒径显著减小。扫描电子显微镜图像显示,所有颗粒制剂均呈光滑球形。将阳离子 PEI 掺入 PLGA 颗粒中会使 ζ-电位从负变为正。将 PEI 与 ApoE pDNA 复合会增加 ApoE pDNA 负载到 PLGA 微球中的效率。负载有 PEI-ApoE pDNA 复合物的 PLGA 颗粒的细胞毒性与单独负载 ApoE pDNA 的 PLGA 颗粒相似。与 HEK293 和 COS7 细胞系相比,所有用 ApoE pDNA 制备的颗粒制剂在 HepG2 细胞中的转染效率均显着提高。用不同 PLGA 聚合物组成(包括 50-50PLGA、75-25PLGA 和 85-15PLGA)制备的颗粒中 PEI-pDNA 复合物的释放均保持持续,但释放曲线取决于聚合物组成。透射电子显微镜图像显示,PEI-pDNA 复合物在释放后结构仍保持完整。对于负载有 PEI-ApoE pDNA 复合物的 PLGA 颗粒,最佳制剂是使用 2%聚乙烯醇、50-50PLGA 组成和 N/P 比为 5-10 制备的。PLGA PEI-ApoE pDNA 颗粒在测试的 13 天内持续产生强烈的 HepG2 细胞中的转基因表达。