Suppr超能文献

睾酮和 TGF-β3 对血睾屏障中内吞囊泡介导的蛋白运输事件的差异影响。

Differential effects of testosterone and TGF-β3 on endocytic vesicle-mediated protein trafficking events at the blood-testis barrier.

机构信息

Center for Biomedical Research, Population Council, New York, NY 10065, USA.

出版信息

Exp Cell Res. 2010 Oct 15;316(17):2945-60. doi: 10.1016/j.yexcr.2010.07.018. Epub 2010 Aug 1.

Abstract

The intricate interaction between protein endocytosis, transcytosis, recycling and endosome- or ubiquitin-mediated protein degradation determines the junction integrity in epithelial cells including Sertoli cells at the blood-testis barrier (BTB). Studies have shown that androgens and cytokines (e.g., TGF-β3) that are known to promote and disrupt BTB integrity, respectively, accelerate protein endocytosis at the BTB. We hypothesized that testosterone-induced endocytosed proteins are transcytosed and recycled back to the Sertoli cell surface, whereas cytokine-induced endocytosed proteins are degraded so that androgens and cytokines have opposing effects on BTB integrity. Herein, we report that both testosterone and TGF-β3 induced the steady-state level of clathrin, an endocytic vesicle protein. Testosterone and TGF-β3 also induced the association between internalized occludin (a BTB integral membrane protein) and clathrin, as well as early endosome antigen-1 (EEA-1). Interestingly, testosterone, but not TGF-β3, also induced the levels of proteins that regulate protein transcytosis (e.g., caveolin-1) and recycling (e.g., Rab11), and their association with internalized occludin and N-cadherin from the cell surface. In contrast, TGF-β3, but not testosterone, induced the level of ubiquitin-conjugating enzyme E2 J1 (Ube2j1), a protein crucial to the intracellular protein degradation pathway, and its association with internalized occludin. Based on these findings and recent reports in the field, we hypothesize that the concerted effects of testosterone and TGF-β3 likely facilitate the transit of preleptotene spermatocytes at the BTB while maintaining the immunological barrier in that testosterone induces the assembly of "new" tight junction (TJ)-fibrils below migrating spermatocytes via protein transcytosis and recycling before cytokines induce the disassembly of "old" TJ-fibrils above spermatocytes via endocytic vesicle-mediated degradation of internalized proteins. This thus provides a unique mechanism in the testis to facilitate the transit of preleptotene spermatocytes, many of which are connected in "clones" via cytoplasmic bridges, at the BTB while maintaining the immunological barrier during stage VIII of the seminiferous epithelial cycle of spermatogenesis.

摘要

蛋白质内吞作用、转胞吞作用、再循环以及内体或泛素介导的蛋白质降解之间的复杂相互作用决定了上皮细胞(包括睾丸血睾屏障中的支持细胞)连接的完整性。研究表明,已知分别促进和破坏血睾屏障完整性的雄激素和细胞因子(例如 TGF-β3)可加速血睾屏障处的蛋白质内吞作用。我们假设,雄激素诱导的内吞蛋白被转胞吞作用并再循环回支持细胞表面,而细胞因子诱导的内吞蛋白则被降解,因此雄激素和细胞因子对血睾屏障的完整性具有相反的影响。在此,我们报告说,睾丸酮和 TGF-β3 均诱导网格蛋白(一种内吞小泡蛋白)的稳态水平。睾丸酮和 TGF-β3 还诱导内化 occludin(一种血睾屏障完整的膜蛋白)与网格蛋白和早期内体抗原-1(EEA-1)的结合。有趣的是,睾丸酮但不是 TGF-β3 也诱导调节蛋白质转胞吞作用(例如,窖蛋白-1)和再循环(例如,Rab11)的蛋白水平及其与内化 occludin 和 N-钙黏蛋白从细胞表面的关联。相反,TGF-β3 但不是睾丸酮诱导泛素连接酶 E2 J1(Ube2j1)的水平,该蛋白对细胞内蛋白质降解途径至关重要,并且与内化 occludin 的关联。基于这些发现和该领域的最新报告,我们假设,睾丸酮和 TGF-β3 的协同作用可能有助于 preleptotene 精母细胞在血睾屏障中的转运,同时维持免疫屏障,因为睾丸酮通过蛋白质转胞吞作用和再循环诱导迁移精母细胞下方“新”紧密连接(TJ)纤维的组装,然后细胞因子通过内体小泡介导的内化蛋白降解诱导精母细胞上方“旧”TJ 纤维的解组装。这为精子发生的生精上皮周期的第 VIII 阶段期间在血睾屏障处促进 preleptotene 精母细胞的转运提供了一个独特的机制,其中许多精母细胞通过细胞质桥连接成“克隆”。

相似文献

1
Differential effects of testosterone and TGF-β3 on endocytic vesicle-mediated protein trafficking events at the blood-testis barrier.
Exp Cell Res. 2010 Oct 15;316(17):2945-60. doi: 10.1016/j.yexcr.2010.07.018. Epub 2010 Aug 1.
3
Regulation of blood-testis barrier dynamics by TGF-beta3 is a Cdc42-dependent protein trafficking event.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11399-404. doi: 10.1073/pnas.1001077107. Epub 2010 Jun 7.
5
Differential effects of c-Src and c-Yes on the endocytic vesicle-mediated trafficking events at the Sertoli cell blood-testis barrier: an in vitro study.
Am J Physiol Endocrinol Metab. 2014 Oct 1;307(7):E553-62. doi: 10.1152/ajpendo.00176.2014. Epub 2014 Aug 12.
7
c-Yes regulates cell adhesion at the blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithelium of rat testes.
Int J Biochem Cell Biol. 2011 Apr;43(4):651-65. doi: 10.1016/j.biocel.2011.01.008. Epub 2011 Jan 21.
8
Abcb1a and Abcb1b genes function differentially in blood-testis barrier dynamics in the rat.
Cell Death Dis. 2017 Sep 7;8(9):e3038. doi: 10.1038/cddis.2017.435.
9
The blood-testis barrier and its implications for male contraception.
Pharmacol Rev. 2012 Jan;64(1):16-64. doi: 10.1124/pr.110.002790. Epub 2011 Oct 28.

引用本文的文献

1
Effect of Dietetic Obesity on Testicular Transcriptome in Cynomolgus Monkeys.
Genes (Basel). 2023 Feb 23;14(3):557. doi: 10.3390/genes14030557.
3
What Does Androgen Receptor Signaling Pathway in Sertoli Cells During Normal Spermatogenesis Tell Us?
Front Endocrinol (Lausanne). 2022 Feb 24;13:838858. doi: 10.3389/fendo.2022.838858. eCollection 2022.
6
Cdc42 activity in Sertoli cells is essential for maintenance of spermatogenesis.
Cell Rep. 2021 Oct 26;37(4):109885. doi: 10.1016/j.celrep.2021.109885.
7
Androgen Actions in the Testis and the Regulation of Spermatogenesis.
Adv Exp Med Biol. 2021;1288:175-203. doi: 10.1007/978-3-030-77779-1_9.
8
Ascorbic acid inhibits cadmium-induced disruption of the blood-testis barrier by regulating oxidative stress-mediated p38 MAPK pathways.
Environ Sci Pollut Res Int. 2018 Aug;25(22):21713-21720. doi: 10.1007/s11356-018-2138-4. Epub 2018 May 22.
9
Regulation of blood-testis barrier assembly in vivo by germ cells.
FASEB J. 2018 Mar;32(3):1653-1664. doi: 10.1096/fj.201700681R. Epub 2018 Jan 3.
10
mTORC1/rpS6 regulates blood-testis barrier dynamics and spermatogenetic function in the testis in vivo.
Am J Physiol Endocrinol Metab. 2018 Feb 1;314(2):E174-E190. doi: 10.1152/ajpendo.00263.2017. Epub 2017 Oct 31.

本文引用的文献

1
A local autocrine axis in the testes that regulates spermatogenesis.
Nat Rev Endocrinol. 2010 Jul;6(7):380-95. doi: 10.1038/nrendo.2010.71.
2
Polarity and endocytosis: reciprocal regulation.
Trends Cell Biol. 2010 Aug;20(8):445-52. doi: 10.1016/j.tcb.2010.04.003. Epub 2010 May 20.
3
Dynamics and functions of tight junctions.
Trends Cell Biol. 2010 Mar;20(3):142-9. doi: 10.1016/j.tcb.2009.12.002. Epub 2010 Jan 12.
4
The early endosome: a busy sorting station for proteins at the crossroads.
Histol Histopathol. 2010 Jan;25(1):99-112. doi: 10.14670/HH-25.99.
5
Apical trafficking in epithelial cells: signals, clusters and motors.
J Cell Sci. 2009 Dec 1;122(Pt 23):4253-66. doi: 10.1242/jcs.032615.
6
Integrins: masters and slaves of endocytic transport.
Nat Rev Mol Cell Biol. 2009 Dec;10(12):843-53. doi: 10.1038/nrm2799.
7
Blood-testis barrier, junctional and transport proteins and spermatogenesis.
Adv Exp Med Biol. 2008;636:212-33. doi: 10.1007/978-0-387-09597-4_12.
8
Regulation of blood-testis barrier dynamics by focal adhesion kinase (FAK): an unexpected turn of events.
Cell Cycle. 2009 Nov 1;8(21):3493-9. doi: 10.4161/cc.8.21.9833. Epub 2009 Nov 17.
9
Claudin 11 deficiency in mice results in loss of the Sertoli cell epithelial phenotype in the testis.
Biol Reprod. 2010 Jan;82(1):202-13. doi: 10.1095/biolreprod.109.078907. Epub 2009 Sep 9.
10
Drug transporter, P-glycoprotein (MDR1), is an integrated component of the mammalian blood-testis barrier.
Int J Biochem Cell Biol. 2009 Dec;41(12):2578-87. doi: 10.1016/j.biocel.2009.08.015. Epub 2009 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验