Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
J Struct Biol. 2011 Jan;173(1):46-56. doi: 10.1016/j.jsb.2010.07.008. Epub 2010 Aug 1.
β-glucosidases (EC 3.2.1.21) cleave β-glucosidic linkages in disaccharide or glucose-substituted molecules and play important roles in fundamental biological processes. β-Glucosidases have been widely used in agricultural, biotechnological, industrial and medical applications. In this study, a high yield expression (70-250 mg/l) in Escherichia coli of the three functional β-glucosidase genes was obtained from the bacterium Clostridium cellulovorans (CcBglA), the fungus Trichoderma reesei (TrBgl2), and the termite Neotermes koshunensis (NkBgl) with the crystal structures of CcBglA, TrBgl2 and NkBgl, determined at 1.9Å, 1.63Å and 1.34Å resolution, respectively. The overall structures of these enzymes are similar to those belonging to the β-retaining glycosyl hydrolase family 1, which have a classical (α/β)(8)-TIM barrel fold. Each contains a slot-like active site cleft and a more variable outer opening, related to its function in processing different lengths of β-1,4-linked glucose derivatives. The two essential glutamate residues for hydrolysis are spatially conserved in the active site. In both TrBgl2 and NkBgl structures, a Tris molecule was found to bind at the active site, explaining the slight inhibition of hydrolase activity observed in Tris buffer. Manganese ions at 10mM exerted an approximate 2-fold enzyme activity enhancement of all three β-glucosidases, with CcBglA catalyzing the most efficiently in hydrolysis reaction and tolerating Tris as well as some metal inhibition. In summary, our results for the structural and functional properties of these three β-glucosidases from various biological sources open important avenues of exploration for further practical applications.
β-葡萄糖苷酶(EC 3.2.1.21)能够切割二糖或葡萄糖取代分子中的β-葡萄糖苷键,在基本的生物过程中发挥着重要作用。β-葡萄糖苷酶已广泛应用于农业、生物技术、工业和医学领域。在这项研究中,通过在大肠杆菌中表达,从纤维素分解梭菌(CcBglA)、里氏木霉(TrBgl2)和家白蚁(NkBgl)中获得了三种功能性β-葡萄糖苷酶基因的高产量表达(70-250mg/L),并解析了 CcBglA、TrBgl2 和 NkBgl 的晶体结构,分辨率分别为 1.9Å、1.63Å 和 1.34Å。这些酶的整体结构与属于β-保留糖苷水解酶家族 1 的结构相似,具有经典的(α/β)(8)-TIM 桶折叠。每个都包含一个类似狭槽的活性位点裂缝和一个更可变的外部开口,与它们在加工不同长度的β-1,4 连接葡萄糖衍生物方面的功能有关。水解的两个必需谷氨酸残基在活性位点中空间保守。在 TrBgl2 和 NkBgl 结构中,发现一个三磷酸分子结合在活性位点上,这解释了在 Tris 缓冲液中观察到的水解酶活性略有抑制的原因。10mM 的锰离子对所有三种β-葡萄糖苷酶的酶活性增强约 2 倍,其中 CcBglA 在水解反应中催化效率最高,并且能够耐受 Tris 以及一些金属的抑制。总之,我们对这三种来自不同生物来源的β-葡萄糖苷酶的结构和功能特性的研究结果为进一步的实际应用开辟了重要的探索途径。