Suppr超能文献

里氏木霉内切葡聚糖酶I催化核心结构域的晶体结构,分辨率为3.6埃,以及与相关酶的比较。

The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes.

作者信息

Kleywegt G J, Zou J Y, Divne C, Davies G J, Sinning I, Stâhlberg J, Reinikainen T, Srisodsuk M, Teeri T T, Jones T A

机构信息

Biomedical Centre, Uppsala University, Uppsala, SE-751 24, Sweden.

出版信息

J Mol Biol. 1997 Sep 26;272(3):383-97. doi: 10.1006/jmbi.1997.1243.

Abstract

Cellulose is the most abundant polymer in the biosphere. Although generally resistant to degradation, it may be hydrolysed by cellulolytic organisms that have evolved a variety of structurally distinct enzymes, cellobiohydrolases and endoglucanases, for this purpose. Endoglucanase I (EG I) is the major endoglucanase produced by the cellulolytic fungus Trichoderma reesei, accounting for 5 to 10% of the total amount of cellulases produced by this organism. Together with EG I from Humicola insolens and T. reesei cellobiohydrolase I (CBH I), the enzyme is classified into family 7 of the glycosyl hydrolases, and it catalyses hydrolysis with a net retention of the anomeric configuration. The structure of the catalytic core domain (residues 1 to 371) of EG I from T. reesei has been determined at 3.6 A resolution by the molecular replacement method using the structures of T. reesei CBH I and H. insolens EG I as search models. By employing the 2-fold non-crystallographic symmetry (NCS), the structure was refined successfully, despite the limited resolution. The final model has an R-factor of 0.201 (Rfree 0.258). The structure of EG I reveals an extended, open substrate-binding cleft, rather than a tunnel as found in the homologous cellobiohydrolase CBH I. This confirms the earlier proposal that the tunnel-forming loops in CBH I have been deleted in EG I, which has resulted in an open active site in EG I, enabling it to function as an endoglucanase. Comparison of the structure of EG I with several related enzymes reveals structural similarities, and differences that relate to their biological function in degrading particular substrates. A possible structural explanation of the drastically different pH profiles of T. reesei and H. insolens EG I is proposed.

摘要

纤维素是生物圈中最丰富的聚合物。尽管它通常抗降解,但可被已进化出多种结构不同的酶(纤维二糖水解酶和内切葡聚糖酶)的纤维素分解生物水解。内切葡聚糖酶I(EG I)是纤维素分解真菌里氏木霉产生的主要内切葡聚糖酶,占该生物体产生的纤维素酶总量的5%至10%。该酶与来自特异腐质霉的EG I和里氏木霉纤维二糖水解酶I(CBH I)一起被归类到糖基水解酶家族7,它催化水解反应时端基异构构型净保留。利用里氏木霉CBH I和特异腐质霉EG I的结构作为搜索模型,通过分子置换法以3.6 Å分辨率测定了里氏木霉EG I催化核心结构域(第1至371位氨基酸残基)的结构。尽管分辨率有限,但通过采用二重非晶体学对称性(NCS),该结构得以成功优化。最终模型的R因子为0.201(自由R因子为0.258)。EG I的结构显示出一个延伸的、开放的底物结合裂隙,而不是在同源纤维二糖水解酶CBH I中发现的隧道结构。这证实了早期的推测,即CBH I中形成隧道的环在EG I中已缺失,这导致EG I具有开放的活性位点,使其能够作为内切葡聚糖酶发挥作用。将EG I的结构与几种相关酶进行比较,揭示了结构上的相似性以及与它们降解特定底物的生物学功能相关的差异。提出了对里氏木霉和特异腐质霉EG I截然不同的pH谱的一种可能的结构解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验