Suppr超能文献

验证使用特定放射免疫分析法或高效液相色谱法估算环孢素 A 浓度-时间曲线下面积的稀疏采样策略。

Validation of sparse sampling strategies to estimate cyclosporine A area under the concentration-time curve using either a specific radioimmunoassay or high-performance liquid chromatography method.

机构信息

Department of Clinical Pharmacology, Ostrava University Hospital and Medical Faculty, University of Ostrava, Ostrava, Czech Republic.

出版信息

Ther Drug Monit. 2010 Oct;32(5):586-93. doi: 10.1097/FTD.0b013e3181ed59fe.

Abstract

INTRODUCTION

Area under the concentration-time curve (AUC) has been advocated as a better parameter to monitor cyclosporine A than trough concentrations. Up to now, more than 100 equations to estimate AUC using a limited sampling strategy have been published, but not all have been validated.

MATERIAL AND METHODS

Eight equations for AUC0-12h and two for AUC0-8h were validated. Concentrations of cyclosporine A were analyzed by high-performance liquid chromatography (HPLC) and a specific radioimmunoassay (RIA) method. Forty male renal transplant patients were included in the study. Blood samples were taken predose and at 0.5, 1, 1.5, 2, 3, 5, 8, and 12 hours after the morning dose when the patient was in steady state. The percentage prediction error (%pe) was used for an assessment of the performance of the equations. Mean %pe less than ± 15% and absolute %pe less than 30% in 95% of predictions were considered to be acceptable. Other possibilities such as %pe less than 25%, 20%, and 15% were also tested.

RESULTS

Eight equations for AUC0-12h met the requirements using both assays, six in the HPLC set only and four in the RIA set only. The highest precision was obtained with AUC0-12h = 123.792 + 1.165C1h + 3.021C3h + 7.33C8h proposed by de Mattos et al. The mean %pe was 1% ± 8% (-16 to 19) for HPLC (values given as mean ± standard deviation [range]) and -1 ± 5 (-17 to 10) for RIA. Mean absolute %pe was 7 ± 5 (0.0 to 19) for HPLC and 4 ± 4 (0.0 to 17) for RIA. For clinical use, the most suitable equation was AUC0-12h = 363.078 + 8.77C1h + 3.07C3h proposed by Wacke et al, which produced the second lowest %pe and used two sampling points in the period of 1 to 3 hours after dose. The mean %pe was -7 ± 10 (-25 to 25) for HPLC and 2.3 ± 6 (-10 to 17) for RIA. Mean absolute %pe was 10 ± 7 (0.4 to 25) for HPLC and 5 ± 4 (0.0 to 17) for RIA. The equation: AUC0-8h = 55.37 + 2.89C0h + 1.08C1h0.9C2h + 2.23*C3h proposed by Foradori et al met the criteria with 95% of prediction with absolute %pe less than 15% in the HPLC set and 10% in the RIA set.

CONCLUSION

The validation of equations is of major importance for prediction precision, whereas the analytical method for limited sampling strategy proposals had no influence. Because of the wide interassay variability, it is also important to know which analytical method was used for AUC calculation when interpreting the results.

摘要

简介

与谷浓度相比,浓度-时间曲线下面积(AUC)已被提倡作为监测环孢素 A 的更好参数。到目前为止,已经发表了 100 多个使用有限采样策略估算 AUC 的方程,但并非所有方程都经过验证。

材料和方法

验证了 8 个 AUC0-12h 方程和 2 个 AUC0-8h 方程。环孢素 A 的浓度通过高效液相色谱(HPLC)和特定放射免疫分析(RIA)方法进行分析。40 名男性肾移植患者纳入本研究。当患者处于稳定状态时,在早上给药后 0.5、1、1.5、2、3、5、8 和 12 小时取血样。使用百分比预测误差(%pe)来评估方程的性能。95%的预测中,平均%pe 小于±15%且绝对%pe 小于 30%被认为是可接受的。还测试了其他可能性,如%pe 小于 25%、20%和 15%。

结果

使用两种检测方法,有 8 个 AUC0-12h 方程符合要求,其中 6 个仅在 HPLC 组中,4 个仅在 RIA 组中。de Mattos 等人提出的 AUC0-12h = 123.792 + 1.165C1h + 3.021C3h + 7.33C8h 具有最高的精度。HPLC 的平均%pe 为 1%±8%(-16 至 19)(平均值±标准差[范围]),RIA 的平均%pe 为-1%±5%(-17 至 10)。HPLC 的平均绝对%pe 为 7%±5%(0.0 至 19),RIA 的平均绝对%pe 为 4%±4%(0.0 至 17)。对于临床应用,最适合的方程是 Wacke 等人提出的 AUC0-12h = 363.078 + 8.77C1h + 3.07C3h,该方程产生的%pe 最低,且使用两个采样点在给药后 1 至 3 小时之间。HPLC 的平均%pe 为-7%±10%(-25 至 25),RIA 的平均%pe 为 2.3%±6%(-10 至 17)。HPLC 的平均绝对%pe 为 10%±7%(0.4 至 25),RIA 的平均绝对%pe 为 5%±4%(0.0 至 17)。Foradori 等人提出的 AUC0-8h = 55.37 + 2.89C0h + 1.08C1h0.9C2h + 2.23*C3h 方程符合标准,在 HPLC 组中 95%的预测有绝对%pe 小于 15%,在 RIA 组中 10%的预测有绝对%pe 小于 15%。

结论

方程的验证对于预测精度非常重要,而有限采样策略建议的分析方法对 AUC 计算没有影响。由于分析方法的变异性较大,在解释结果时,了解计算 AUC 时使用了哪种分析方法也很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验