Department of Molecular Biology, Princeton University, 415 Schultz Laboratory, Princeton, NJ 08544, USA.
Cell Mol Life Sci. 2010 Dec;67(23):3983-4000. doi: 10.1007/s00018-010-0475-7. Epub 2010 Aug 4.
The physiological state of eukaryotic DNA is chromatin. Nucleosomes, which consist of DNA in complex with histones, are the fundamental unit of chromatin. The post-translational modifications (PTMs) of histones play a critical role in the control of gene transcription, epigenetics and other DNA-templated processes. It has been known for several years that these PTMs function in concert to allow for the storage and transduction of highly specific signals through combinations of modifications. This code, the combinatorial histone code, functions much like a bar code or combination lock providing the potential for massive information content. The capacity to directly measure these combinatorial histone codes has mostly been laborious and challenging, thus limiting efforts often to one or two samples. Recently, progress has been made in determining such information quickly, quantitatively and sensitively. Here we review both the historical and recent progress toward routine and rapid combinatorial histone code analysis.
真核生物 DNA 的生理状态是染色质。核小体由与组蛋白结合的 DNA 组成,是染色质的基本单位。组蛋白的翻译后修饰 (PTMs) 在基因转录、表观遗传学和其他 DNA 模板过程的控制中起着关键作用。几年来,人们已经知道这些 PTMs 协同作用,通过修饰的组合来允许高度特异性信号的存储和转导。这种代码,组合组蛋白代码,功能非常类似于条形码或组合锁,提供了大量信息内容的潜力。直接测量这些组合组蛋白代码的能力通常非常费力和具有挑战性,因此限制了通常只有一两个样本的努力。最近,在快速、定量和敏感地确定这些信息方面取得了进展。在这里,我们回顾了常规和快速组合组蛋白密码分析的历史和最新进展。