Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
J Am Chem Soc. 2010 Aug 25;132(33):11678-91. doi: 10.1021/ja104392k.
Concerted proton-electron transfer (CPET) is documented for the homogeneous reduction of O(2) to HO(2)(*) in water by the one-electron-reduced heteropolytungstate anion, alpha-PW(12)O(40)(4-) (1(1e)). At 0.01-0.3 M H(+), O(2) reduction occurs via outer-sphere electron transfer followed by proton transfer (ETPT, with rate constant k(ET)). Between 0.30 and 1.9 M H(+), rates increase linearly with [H(+)] due to a parallel CPET pathway in which H(+) is now a reactant: (1/2)k(obs) = k(ET) + k(CPET)[H(+)] (k(ET) = 1.2 M(-1) s(-1); k(CPET) = 0.8 M(-2) s(-1)). Control experiments rule out preassociation between H(+) and 1(1e). Analysis of plausible rate expressions shows that the first-order dependence on [H(+)] is uniquely consistent with multisite CPET, and a deuterium kinetic isotope effect of 1.7 is observed. Reductions of O(2) by alpha-SiW(12)O(40)(5-) confirm theoretical predictions that CPET decreases in significance as ET becomes less endergonic. Marcus analysis, including the temperature dependence of DeltaG(o), gives reorganization energies, lambda(ET) = 41.5 kcal mol(-1) and lambda(CPET) = 52.4 kcal mol(-1). At 1.5 M H(+), approximately 75% of the (1(1e),O(2)) encounter pairs form within 6 A of H(+) ions. This value (6 +/- 1 A) is the "reaction distance" for proton diffusion and probably close to that for CPET. Even so, the 70-200 ps lifetimes of the (1(1e),O(2)) pairs provide additional time for H(+) to diffuse closer to O(2). CPET is first-order in [H(+)] because k(e) for "cage escape" from (1(1e),O(2)) pairs is much larger than k(CPET), such that the rate expression for CPET becomes -(1/2)d[1(1e)]/dt = (k(d)/k(e))k(CPET)[1(1e)][O(2)][H(+)], where k(d) is the rate constant for (1(1e),O(2)) pair formation. Overall, the findings suggest that the emergence of CPET, with hydronium ion as the proton donor, may prove a general feature of sufficiently endergonic reductions of dioxygen by otherwise "outer-sphere" complexes (or electrode reactions) at sufficiently low pH values in water.
协同质子-电子转移(CPET)在水中被记录为一电子还原的杂多钨酸盐阴离子α-PW(12)O(40)(4-)(1(1e))将 O(2)均相还原为 HO(2)(*)。在 0.01-0.3 M H(+)下,O(2)还原通过外层电子转移(ETPT,速率常数 k(ET))发生,然后通过质子转移(ETPT)。在 0.30 至 1.9 M H(+)之间,由于平行 CPET 途径,速率随[H(+)]线性增加,其中 H(+)现在是反应物:(1/2)k(obs)= k(ET)+ k(CPET)[H(+)](k(ET)= 1.2 M(-1)s(-1);k(CPET)= 0.8 M(-2)s(-1))。对照实验排除了 H(+)与 1(1e)之间的预结合。对合理的速率表达式的分析表明,对[H(+)]的一阶依赖关系与多部位 CPET 完全一致,并且观察到氘动力学同位素效应为 1.7。α-SiW(12)O(40)(5-)对 O(2)的还原证实了 CPET 的重要性随着 ET 变得更非焓驱动而降低的理论预测。Marcus 分析,包括 DeltaG(o)的温度依赖性,给出了重组能,lambda(ET)= 41.5 kcal mol(-1)和 lambda(CPET)= 52.4 kcal mol(-1)。在 1.5 M H(+)下,大约 75%的(1(1e),O(2))遭遇对在距离 H(+)离子 6 A 内形成。此值(6 +/- 1 A)是质子扩散的“反应距离”,可能接近 CPET。尽管如此,(1(1e),O(2))对的 70-200 ps 寿命为 H(+)扩散到 O(2)附近提供了额外的时间。CPET 是[H(+)]的一阶,因为从(1(1e),O(2))对“笼逃逸”的 k(e)远大于 k(CPET),使得 CPET 的速率表达式变为-(1/2)d[1(1e)]/dt =(k(d)/k(e))k(CPET)[1(1e)][O(2)][H(+)],其中 k(d)是(1(1e),O(2))对形成的速率常数。总体而言,这些发现表明,协同质子-电子转移(CPET)的出现,以水合氢离子作为质子供体,可能在足够低的 pH 值下,在水中通过其他“外层”配合物(或电极反应)将氧气进行足够焓驱动的还原时,成为一种普遍特征。