Geletii Yurii V, Hill Craig L, Atalla Rajai H, Weinstock Ira A
Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
J Am Chem Soc. 2006 Dec 27;128(51):17033-42. doi: 10.1021/ja064244g.
Fundamental information concerning the mechanism of electron transfer from reduced heteropolytungstates (POM(red)) to O2, and the effect of donor-ion charge on reduction of O2 to superoxide anion (O2.-), is obtained using an isostructural series of 1e--reduced donors: alpha-X(n+)W12O40(9-n)-, X(n+) = Al3+, Si4+, P5+. For all three, a single rate expression is observed: -d[POM(red)]/dt = 2k12[POM(red)][O2], where k12 is for the rate-limiting electron transfer from POM(red) to O2. At pH 2 (175 mM ionic strength), k12 increases from 1.4 +/- 0.2 to 8.5 +/- 1 to 24 +/- 2 M-1s-1 as Xn+ is varied from P5+ (3red) to Si4+ (2red) to Al3+ (1red). Variable-pH data (for 1red) and solvent-kinetic isotope (KIE = kH/kD) data (all three ions) indicate that protonated superoxide (HO2.) is formed in two steps--electron transfer, followed by proton transfer (ET-PT mechanism--rather than via simultaneous proton-coupled electron transfer (PCET). Support for an outersphere mechanism is provided by agreement between experimental k12 values and those calculated using the Marcus cross relation. Further evidence is provided by the small variation in k12 observed when Xn+ is changed from P5+ to Si4+ to Al3+, and the driving force for formation of O2.- (aq), which increases as cluster-anion charge becomes more negative, increases by nearly +0.4 V (a decrease of >9 kcal mol-1 in DeltaG degrees ). The weak dependence of k12 on POM reduction potentials reflects the outersphere ET-PT mechanism: as the anions become more negatively charged, the "successor-complex" ion pairs are subject to larger anion-anion repulsions, in the order [(3(ox)3-)(O2.-)]4- < [(2(ox)4-)(O2.-)]5- < [(1(ox)5-)(O2.-)]6-. This reveals an inherent limitation to the use of heteropolytungstate charge and reduction potential to control rates of electron transfer to O2 under turnover conditions in catalysis.
α-X(n+)W12O40(9-n)-,X(n+) = Al3+、Si4+、P5+,获得了关于电子从还原态杂多钨酸盐(POM(red))转移至O2的机制,以及供体离子电荷对O2还原为超氧阴离子(O2•-)的影响的基本信息。对于所有这三种情况,观察到单一的速率表达式:-d[POM(red)]/dt = 2k12[POM(red)][O2],其中k12为从POM(red)到O2的限速电子转移速率常数。在pH 2(离子强度175 mM)条件下,当Xn+从P5+(3red)变为Si4+(2red)再变为Al3+(1red)时,k12从1.4±0.2 M-1s-1增加到8.5±1 M-1s-1再增加到24±2 M-1s-1。可变pH数据(对于1red)和溶剂动力学同位素(KIE = kH/kD)数据(所有三种离子)表明,质子化超氧化物(HO2•)通过两步形成——电子转移,随后是质子转移(ET-PT机制——而非通过同时的质子耦合电子转移(PCET))。实验得到的k12值与使用马库斯交叉关系计算得到的值之间的一致性为外层机制提供了支持。当Xn+从P5+变为Si4+再变为Al3+时,观察到k12的变化很小,以及O•2-(aq)形成的驱动力随着簇阴离子电荷变得更负而增加,增加了近+0.4 V(ΔG°减少>9 kcal mol-1),这提供了进一步的证据。k12对POM还原电位的弱依赖性反映了外层ET-PT机制:随着阴离子电荷变得更负,“后继络合物”离子对受到更大的阴离子-阴离子排斥作用,顺序为[(3(ox)3-)(O2•-)]4- < [(2(ox)4-)(O2•-)]5- < [(1(ox)5-)(O2•-)]6-。这揭示了在催化的周转条件下,利用杂多钨酸盐电荷和还原电位来控制电子转移至O2的速率存在固有的局限性。